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Preface to the Second Edition

In the years since the first edition of Statistical Computing with R appeared,
many great enhancements in the R base, recommended packages, and thou-
sands of contributed packages have developed, as well as important new tools
for all aspects of writing and maintaining one’s work in R. Indeed, on August
1, 2018, the CRAN package repository listed 12,860 available packages. Some
of the major highlights are summarized below.

e RStudio: This excellent free integrated development environment (IDE)
provides convenient editing of code, viewing of output and results, file
management, package management, project management, and much
more. It has become the most popular IDE for R users of all levels,
for good reason. Its first public release was February 28, 2011 (0.92.23).
It is available at www.rstudio.org. Chapter 1 “Introduction” has been
revised accordingly.

e geplot: ggplot and its successor ggplot2 [313] (ggplot2 release 0.7 on
October 5, 2008: ggplot2-0.7) offers an alternate system of graphics that
has had a great impact on much of the graphics content in R analyses.
An introduction to ggplot is now included in Chapter 1 and some of the
plots in the second edition are generated with ggplot or the ggplot code
is provided.

e knitr: The introduction of the knitr package [323, 324] has greatly fa-
cilitated reproducible research with R. Reproducible research is ideally
generated by a type of report which integrates the expository content,
data input, data analysis, output and graphics seamlessly into one doc-
ument, such that the entire project is reproducible through executing
this document. An early form of this type of report was provided by the
KTEX Sweave package. Now the knitr package for R provides an en-
gine for dynamic report generation within the RStudio IDE. It supports
Sweave as well as R Markdown, which produces html or Word format
output without IXTEX. It is so easy to use that first-year undergraduates
can produce beautiful reports to submit as assignments in all types of
courses. My first assignment is usually to have students create an html
report implementing a few of the examples in Chapter 1. Subsequently,
all assignments are submitted in that format. Now Chapter 1 has a new
Exercises section and that is the final exercise.

Xi
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e tidyverse: tidyverse.org is a great collection of some almost essen-
tial utilities. It includes packages like dplyr [317] which makes reading
and manipulating large data frames much faster, stringr [314] and lubri-
date [131] for easier operations with strings and dates, and the graphics
package ggplot2 [313], to name a few. For readers who prefer a mini-
mal installation, only ggplot2 and knitr (and the packages required by
them) will be needed to get started. Other packages will be needed for
functions and/or data in later chapters, but most of tidyverse would
not be used later in the book. However, most readers plan to use R for
statistics apart from this book and may find it convenient to install all
of tidyverse in one step.

e Rcpp: The Repp [82, 83] package makes it relatively straightforward to
integrate C or C++ code to an R script or source a C++ file from an
R script. It can all be managed without leaving the RStudio IDE.

The second edition includes new chapters and sections, some additional
exercises, examples, applications, and some material has been re-organized. A
new section on Principal Components Analysis has been added to the chapter
“Visualization of Multivariate Data.” The chapter “Methods for Generating
Random Variables” has been split into two chapters, creating a new chapter
“Generating Random Processes.” A new chapter “Resampling Applications”
follows “Bootstrap and Jackknife” with an expanded section on jackknife-
after-bootstrap and some applications of resampling for linear models. The
final chapter of the first edition, “Numerical Methods in R” has been split
into “Introduction to Numerical Methods in R” and “Optimization.” Finally,
a new chapter “Programming Topics” covers topics for more experienced users
such as benchmarking, profiling, object size, finding source code, and a very
brief introduction to the Repp package to extend R with C++.

The extended example at the end of Chapter 15 replaces Appendix B of
the first edition, which covered methods for extracting and manipulating data.
The application applies basic methods as well as alternate methods using dplyr
package. The two approaches are compared and also benchmarked. Appendix
B of the first edition will remain available as an online supplement.

The second edition of Statistical Computing with R will be accompanied by
some online supplements available on GitHub at github.com/mariarizzo/
SCR2e. The R code for all of the examples in the text will be available as well
as a few tutorials or extended examples on selected topics.

Maria L. Rizzo, Professor
Department of Mathematics and Statistics
Bowling Green State University
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Preface to the First Edition

This book is an introduction to statistical computing and computational
statistics. Computational statistics is a rapidly expanding area in statistical
research and applications. It includes computationally intensive methods in
statistics, such as Monte Carlo methods, bootstrap, MCMC, density estima-
tion, nonparametric regression, classification and clustering, and visualization
of multivariate data. Gentle [118] and Wegman [308] describe computational
statistics as computationally intensive methods in statistics. Statistical com-
puting, at least traditionally, focused on numerical algorithms for statistics
(see e.g. Thisted [284]). Generally a book has only one of these terms in
the title; for example, Givens and Hoeting’s “ Computational Statistics” [128]
includes classical statistical computing topics in optimization, numerical in-
tegration, density estimation and smoothing, as well as the Monte Carlo and
MCMC methods of computational statistics. We chose the title “Statistical
Computing with R” for this book, which is both computational statistics and
statistical computing, and perhaps emphasizes Monte Carlo and resampling
methods more than the title would suggest.

R is a statistical computing environment based on the S language. The soft-
ware is free under the terms of the Free Software Foundation’s GNU General
Public License. It is available for a wide variety of platforms including among
others Linux, Windows, and MacOS. See http://www.r-project.org/ for a
description. All examples in the text are implemented in R.

This book is designed for graduate students or advanced undergraduates
with preparation in calculus, linear algebra, probability and mathematical
statistics. The text will be suitable for an introductory course in computational
statistics, and may also be used for independent study. In addition, because
of the computational nature of the material, this book serves as an excellent
tutorial on the R language, providing examples that illustrate programming
concepts in the context of practical computational problems. The text does
not assume previous expertise in any particular programming language.

The presentation will focus on implementation rather than theory, but the
connection to the mathematical ideas and theoretical foundations will be made
clear. The first chapter provides an overview of computational statistics and
a brief introduction to the R statistical computing environment. The second
chapter is a summary and review of some basic concepts in probability and
classical statistical inference. Each of the remaining chapters covers a topic in
computational statistics.

xiii
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The selection of topics includes the traditional core material of computa-
tional statistics: simulating random variables from probability distributions,
Monte Carlo integration and variance reduction methods, Monte Carlo and
MCMC methods, bootstrap and jackknife, density estimation, and visualiza-
tion of multivariate data. Although R includes random generators for the com-
monly used probability distributions, there is instructive value in studying the
algorithms for generating them. Research problems often involve distributions
that are non-standard, generalized, or not implemented. Methods for generat-
ing mixtures and multivariate data are also covered. The text concludes with
a chapter on numerical methods in R.

A large number of examples and exercises are included. All examples are
fully implemented in the R statistical computing environment, and the R code
for examples in the book can be downloaded from the author’s web site at
personal.bgsu.edu/~mrizzo. In an effort to keep the material self-contained,
most examples and exercises use datasets available in the R distribution (base
plus recommended packages), or simulated data. Some functions and datasets
in contributed packages available on CRAN are used, which can be installed
by functions provided in R.

Books in print have a long lifetime, while software is constantly evolving.
By the time this book is in a reader’s hands, one or more newer versions of R
will have been released. Every effort has been made to check the code samples
under the current version of R; comments, suggestions, and corrections are
always welcome.

Acknowledgements

This book was inspired at least in part by the excellent statistical com-
puting package R, and the author would like to acknowledge the team of
developers for continuing to support and improve this software.

I would like to thank several reviewers who made invaluable suggestions
and comments, especially Jim Albert, Hua Fang, Herb McGrath, Xiaoping
Shen, and Gabor Székely. I would also like to acknowledge the contribution of
my students who used a preliminary draft of the text at Ohio University and
provided much helpful feedback, with special thanks to Roxana Hritcu, Nihar
Shah, and Jinfei Zhang. Editor Bob Stern, Project Editor Marsha Hecht, and
Project Coordinator Amber Donley of Taylor & Francis / CRC Press have
been very helpful throughout the entire project. Finally, I would like to thank
my family for their constant support and encouragement.

Maria L. Rizzo
Department of Mathematics and Statistics
Bowling Green State University
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Chapter 1

Introduction

1.1 Statistical Computing

Computational statistics and statistical computing are two areas within
statistics that may be broadly described as computational, graphical, and nu-
merical approaches to solving statistical problems. Statistical computing tra-
ditionally has more emphasis on numerical methods and algorithms, such as
optimization and random number generation, while computational statistics
may encompass such topics as exploratory data analysis, Monte Carlo meth-
ods, and data partitioning, etc. However, most researchers who apply com-
putationally intensive methods in statistics use both computational statistics
and statistical computing methods; there is much overlap and the terms are
used differently in different contexts and disciplines. Gentle [118] and Givens
and Hoeting [129] use “computational statistics” to encompass all the rele-
vant topics that should be covered in a modern introductory text, so that
“statistical computing” is somewhat absorbed under this more broad defini-
tion of computational statistics. On the other hand, journals and professional
organizations seem to use both terms to cover similar areas.

This book encompasses parts of both of these subjects, because a first
course in computational methods for statistics necessarily includes both. Some
examples of topics covered are described below.

Monte Carlo methods refer to a diverse collection of methods in statistical
inference and numerical analysis where simulation is used. Many statistical
problems can be approached through some form of Monte Carlo integration.
In parametric bootstrap, samples are generated from a given probability dis-
tribution to compute probabilities, gain information about sampling distribu-
tions of statistics such as bias and standard error, to assess the performance of
procedures in statistical inference, and to compare the performance of compet-
ing methods for the same problem. Resampling methods such as the ordinary
bootstrap and jackknife are nonparametric methods that can be applied when
the distribution of the random variable or a method to simulate it directly is
unavailable. The need for Monte Carlo analysis also arises because in many
problems, an asymptotic approximation is unsatisfactory or intractable. The
convergence to the limit distribution may be too slow, or we require results
for finite samples; or the asymptotic distribution has unknown parameters.
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Monte Carlo methods are covered in Chapters 6-11. The first tool needed in a
simulation is a method for generating psuedo-random samples; these methods
are covered in Chapters 3 and 4.

Markov Chain Monte Carlo (MCMC) methods are based on an algorithm
to sample from a specified target probability distribution that is the stationary
distribution of a Markov chain. These methods are widely applied for problems
arising in Bayesian analysis, and in such diverse fields as computational physics
and computational finance. Markov Chain Monte Carlo methods are covered
in Chapter 11.

Several special topics also deserve an introduction in a survey of com-
putationally intensive methods. Density estimation (Chapter 12) provides a
nonparametric estimate of a density, which has many applications in addition
to estimation, ranging from exploratory data analysis to cluster analysis. Com-
putational methods are essential for the visualization of multivariate data and
reduction of dimensionality. The increasing interest in massive and streaming
data sets, and high dimensional data arising in applications of biology and en-
gineering, for example, demand improved and new computational approaches
for multivariate analysis and visualization. Chapter 5 is an introduction to
methods for visualization of multivariate data. A review of selected topics in
numerical methods such as root finding and numerical integration is presented
in Chapter 13. An introduction to optimization using R is covered in Chapter
14.

A final chapter of optional material specific to R programming should be
accessible to readers after covering Chapter 3. Programming topics such as
benchmarking, efficiency and code profiling are covered in Chapter 15. Several
years ago with the release of Repp [82, 83|, writing R extensions in compiled
libraries became much simpler so that most experienced R users with a modest
amount of background in C++ can easily integrate compiled C++ functions
with R code. Some simple examples are illustrated in the final chapter of the
book for those users who are interested.

Many references can be recommended for further reading on these topics.
Efron and Hastie [89] provide an up-to-date review of how modern statistics
has evolved in the computer age. Gentle [118, 119] and the volume edited by
Gentle, et al. [120] have thorough coverage of topics in computational statis-
tics. A survey of methods in statistical computing is covered in Kundu and
Basu [170]. Givens and Hoeting [129] is a recent graduate text on computa-
tional statistics and statistical computing. Hardle et al. [139] is an introductory
text with examples in R. Martinez and Martinez [197] is an accessible intro-
duction to computational statistics, with numerous examples in MATLAB®.
Books that primarily cover Monte Carlo methods or resampling methods in-
clude Davison and Hinkley [68], Efron and Tibshirani [91], Hjorth [149], Liu
[186], Chernick [50] and Robert and Casella [240]. Statistical learning is a
closely related topic that applies computational methods to solve a wide range
of problems in modern statistics; see Hastie et al. [143] and James et al. [157].
On density estimation see Scott [264] and Silverman [268]. A good resource
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for applied linear models in R and other extensions such as nonparametric re-
gression and smoothing is Faraway [95]. Albert [5] and McElreath [199] cover
Bayesian computational methods with examples in R. For statistical applica-
tions of numerical analysis see Lange [176] or Monahan [210].

Although this book aims to be complete for novice R users to get started,
it is not intended as a full-length text about using R for statistics or data
science. Some R users may also be interested in supplementary resources de-
signed for learning to use R. There is a long list of introductory books and
materials of this type. R by Ezample [7] may appeal to users who enjoy learn-
ing from detailed, fully implemented examples. Verzani [295], Dalgaard [67] or
Wickham and Grolemund [318] are on a similar level. For graphics in R, see
Chang’s R Graphics Cookbook [47] and refer to both Chang [47] and Wickham
[313] for ggplot2.

For technical reference on programming in R, several excellent references
are available in addition to the R manuals [227, 229, 294]. For advanced pro-
gramming topics see Eddelbuettel [82], Gillespie and Lovelace [127], and Wick-
ham [312], and their respective websites.

There are now many excellent online resources available, in addition to the
online R and RStudio documentation, such as galleries of code and graphics,
online books, tutorials and blogs. See the references in the individual chapters
for some of these. The R-bloggers website is worth visiting; it currently com-
bines blog posts from some 750 bloggers at https://www.r-bloggers.com/.

1.2 The R Environment

The R environment is a suite of software and programming language based
on S, for data analysis and visualization. “What is R” is one of the frequently
asked questions included in the online documentation for R. Here is an excerpt
from the R FAQ [226]:

R is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a de-
bugger, access to certain system functions, and the ability to run
programs stored in script files.

R is based on the S language. Some details about differences between R
and S are given in the R FAQ [151]. Venables and Ripley [293] is a good
resource for applied statistics with S, Splus, and R. Other references on the S
language include [27, 42, 45, 292].

The home page of the R project is http://www.r-project.org/, and the
current R distribution and documentation are available on the Comprehensive
R Archive Network (CRAN) at http://cran.R-project.org/. The R dis-
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tribution includes the base and recommended packages with documentation.
A help system and several reference manuals are installed with the program.

Readers who have not already done so should proceed to download and
install the most recent version of R corresponding to their operating sys-
tem. Installation is easy; after downloading the setup file from http://cran.
R-project.org/ and running it, most users will simply accept the default
options as prompted by the installation wizard.

Most R users currently use an integrated development environment or IDE
to interact with the R system, edit source files, and view output. Although a
type of IDE (the R GUI) is included with the R distribution, it is no longer
widely used. Perhaps the most popular IDE for R currently is RStudio. In
this second edition of the book, RStudio is treated as the default IDE as it
is widely used, free to download the noncommercial version, and packed with
convenient features. Users can install a free version of RStudio from https:
//www.rstudio.com/. RStudio has recently released RStudio Cloud, currently
in alpha. For more information about the cloud option, consult the websites
https://rstudio.cloud/ and the community page at https://community.
rstudio.com/c/rstudio-cloud. Other IDEs are available, of course, and any
of them can easily be used with this book.

Programming is discussed as needed in the chapters that follow. In this
text, new functions or programming methods are explained in remarks called
“R notes” as they arise. Some “R notes” also address certain aspects of the R
system or devices. Readers are always encouraged to consult the R help system
and manuals [151, 226, 294]. For platform specific details about installation
and interacting with the graphical user interface the best resources are the R
manual [228] and current information at www.r-project.org.

Although RStudio provides many user-friendly features and powerful tools,
R is a stand-alone program that could be run in batch mode if required for
certain projects. R scripts can execute on a supercomputer and there are
extensions to enable high performance computing. Other extensions like rstan
provide an interface to a powerful scripting language and sampling engine
Stan for Bayesian analysis. Refer to the CRAN Task Views “High Performance
Computing” and “Bayesian” for more details. CRAN Task Views are a good
resource to find what is available on CRAN for a wide range of statistical
and machine learning applications. See https://cloud.r-project.org/web/
views/.

In the remainder of this chapter, we cover some basic information aimed
to help a new user get started with R. Topics include the recommended RStu-
dio integrated development environment, basic syntax, using the online help,
data, files, scripts, and packages. Vectors, matrices, lists and data frames are
introduced with examples, and there is an overview of basic graphics functions.
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1.3 Getting Started with R and RStudio

RStudio provides a convenient user interface that makes R much easier
to use for beginners and advanced users. It is open source and available to
download and install from the RStudio website at https://www.rstudio.
com/. It combines a code editor with syntax highlighting, plot, environment,
and console windows. An integrated help system and other important utilities
are provided. RStudio has extensive support for generating reports using R
Markdown with the knitr package [324], and package development without
leaving the RStudio environment. A screen shot of an RStudio session is shown

in Figure 1.1.

© Rstudio - [=] X
Fle Edit Code View Plots Session Buld Debug Profile Tools Help
@ > - ~ Addins ~ T Project: (None) «
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Sourceonsave | Q - “Run | %% | b Soure - = [ | 5 mport Dataset - | o st -
1 Tibrary(vass) 7 Global Emvironment -
2 set.seed(12345)
3 n< 20 pata
4 r<0 N 5 oL List of 12
5 s < matrix(c(i,r,r,1), 2, 2 2,1
6 X <- mvrnorm(n, 1:2, s) = num [1:2, 1:211001
7 x < x[1] x num [1:20, 1:2] 0.22 -0.456 1.644 2.553 2.595 ...
8 y < x[,2] values
9 n 20
10 plot(x,y,pch=20,cex=2) - o
14| FiTTepastelr=" round (car (x,y). 2} x num [1:20] 0.22 -0.456 1.644 2.553 2.598 ...
13 L < Imyx) y num [1:20] 2.59 2.71 1.89 1.55 2.61 ...
14 abline(L)
15
16 |
Files Plots Pacages Help Viewer —iol
- A zo0m | -Bepot - | O | % Publish -
r=-0.28
0
.
©
.
.
.
161 | (fop Level R Saript = . A d
.
Console /R working, =0 . o4
> Tibrary(vass) .
> set.seed(12345) .
>n< 20 .
>r<o0 .
> s < matrix(c(i,r.r,1), 2, 2 - L
> X <= mvrnorm(n, 132, 5)
> x < x[,1]
>y < x[,2]
>
> plot(x,y,pch=20,cex=2) hd
> title(paste("r=",round(cor (x,y),2))) T T T T
>
> L < Imly=x) 1 0 1 2
> abline()
> x

FIGURE 1.1: RStudio screen shot.

In the screen shot of RStudio, Figure 1.1, an R script is open in the code
editor window (upper left), and it has been run interactively so that commands
and results appear in the Console window (lower left) and Plot window (lower
right). In the upper right the Environment window is visible, showing the
names and values of user defined objects in the environment. To try a similar
example, open the R code file for this chapter, use the mouse to select the
first several lines, and click “Run” from the toolbar in the code editor window.
Alternately click “Source” to run all code in the script.

Commands can also be typed at the prompt in the R Console window. For
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example, we can evaluate the standard normal density ¢(z) = \/% e~ /2

x = 2 by typing the formula or (more conveniently) the dnorm function:

at

> 1/sqrt(2*pi) * exp(-2)
[1] 0.05399097

> dnorm(2)

[1] 0.05399097

In the example above, the command prompt is >. The [1] indicates that
the result displayed is the first element of a vector.

A command can be continued on the next line. The prompt symbol changes
whenever the command on the previous line is not complete. In the example
below, the plot command is continued on the second line, as indicated by the
prompt symbol changing to +.

> plot(cars, xlab="Speed", ylab="Distance to Stop",
+ main="Stopping Distance for Cars in 1920")

Whenever a statement or expression is not complete at the end of a line,
the parser automatically continues it on the next line. No special symbol is
needed to end a line. (A semicolon can be used to separate statements on
a single line, although this tends to make code harder to read.) A group of
statements can be gathered into a single (compound) expression by enclosing
them in curly braces { 7.

To cancel a command, a partial command, or a running script, use Ctrl-C,
or in Windows press the escape key (Esc). If the RStudio console window has
a red square button, an error has occurred and one can debug or click the red
square to stop.

To exit the RStudio IDE, simply close the main window. The program
usually prompts with the question “Save workspace data to /.Rdata?” Click
yes to save the workspace, which includes user defined objects and remembers
any open files, or click “No” to exit without saving.

R Note 1.1 Why are some results not seen in the console?

If R code is submitted interactively in RStudio using “Run”, the R
code and result are echoed to the console, but when a file is sourced
using the “Source” button or source function, statements and results
are not echoed to the console. For example, evaluating the expression
dnorm(2) interactively by typing in the console window or using “Run”
echoes the command and prints the result to the console. However, if
that expression is part of an R script, when the script is sourced using
“Source,” the result is not printed unless we explicitly print it, e.g.,
print (dnorm(2)). In RStudio, the “Source” button has a drop-down
menu with an optional “Source with echo” in case this is an issue.
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R Note 1.2

The RStudio Help menu includes RStudio Docs, which links to an
online support page. A good article to look over on this page is ‘Using
the RStudio IDE’ which covers many basic and less obvious features
of RStudio. A very useful feature for editing within RStudio is that
one or more Source panes can be detached and moved to the desktop.
Simply click on the tab, drag and drop. Also see Keyboard Shortcuts
Help for shortcuts to comment/uncomment lines, reformat code, and
many other actions; a very handy shortcut Ctrl+Enter will run the
selected line(s) of code or the line containing the cursor. To exit the
shortcut help, press Esc.

1.4 Basic Syntax

The usual assignment operator is <-. For example, x <- sqrt(2 * pi)
assigns the value of 1/27 to the symbol x.

R Note 1.3 The assignment operator

In many situations the two assignment operators <- and = can be
used interchangeably. It is a good practice to use <- for assignment
because there is a technical difference between the two operators. The
R documentation on assignment operators states that “The operators
<- and = assign into the environment in which they are evaluated.
The operator <- can be used anywhere, whereas the operator = is
only allowed at the top level (e.g., in the complete expression typed at
the command prompt) or as one of the subexpressions in a braced list
of expressions.” Throughout this book we will use <- for assignment
and reserve = for arguments to functions.

Commands entered at the command prompt in the R console are auto-
matically echoed to the console, but assignment operations are silent. Some
objects have print methods so that the output displayed is not necessarily
the entire object, but a summarized report. Compare the effect of these com-
mands. The first command displays a sequence (0.0 0.5 1.0 1.5 2.0 2.5 3.0),
but does not store it. The second command stores the sequence in x, but does
not display it.

seq(0, 3, 0.5)
x <- seq(0, 3, 0.5)
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Syntax

Below are some help topics on R operators and syntax. The ? invokes the
help system for the indicated keyword.

?Syntax

7Arithmetic

?Comparison #relational operators

7Extract #operators on vectors and arrays
?Control #control flow

?Logic #logical operators

Symbols or labels for functions and variables are case-sensitive and can
include letters, digits, and periods. Symbols cannot contain the underscore
character and cannot start with a digit. Many symbols are already defined by
the R base or recommended packages. To check if a symbol is already defined,
type the symbol at the prompt. The symbols q, t, I, T, and F, for example,
are used by R. Note that whenever a package is loaded, other symbols may
now be defined by the package.

> T

[1] TRUE

>t

function (x) UseMethod("t") <environment: namespace:base>
> g

Error: Object "g" not found

Here we see that both T and t are already defined, but g is not yet defined
by R or by the user. Nothing prevents a user from assigning a new value to
predefined symbols such as t or T, but it is a bad programming practice in
general and can lead to unexpected results and programming errors.

Most new R users have some experience with other programming envi-
ronments and languages such as C, MATLAB, or SAS. Some operations and
features are common to all these languages. A brief list summarizing R syntax
for some of these common elements is shown in Table 1.1. For more details see
the help topic Syntax. Some of the functions common to most development
environments are listed in Table 1.2.

Most arithmetic operations are vectorized. For example, x~2 will square
each of the elements of the vector x, or each entry of the matrix x if x is a
matrix. Similarly, x*xy will multiply each of the elements of the vector x times
the corresponding element of y (generating a warning if the vectors are not
the same length). Operators for matrices are described in Table 1.3.
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TABLE 1.1: R Syntax and Commonly Used Operators
Description R symbol Example
Comment # #this is a comment
Assignment <- x <= log2(2)
Concatenation operator c c(3,2,2)
Elementwise multiplication * axb
Exponentiation - 271.5
x mod y xhhy 25 %% 3
Integer division W/ h 25 %/% 3
Sequence from a tob by h  seq seq(a,b,h)
Sequence operator : 0:20

TABLE 1.2: Commonly Used Functions
Description R symbol
Square root sqrt
lz], [x] floor, ceiling
Natural logarithm log
Exponential function e* exp
Factorial factorial
Random Uniform numbers runif
Random Normal numbers rnorm

Normal distribution
Rank, sort

pnorm, dnorm, gnorm
rank, sort

Variance, covariance var, cov
Std. dev., correlation sd, cor
Frequency tables table
Missing values NA, is.na

1.5 Using the R Online Help System

RStudio includes a Help tab with a search box for searching by keyword.
Help topics can also be searched from the command prompt. For documenta-
tion on a topic, type ?topic or help(topic) where “topic” is the name of the
topic for which you need help. For example, ?seq will bring up documentation
for the sequence function. In some cases, it may be necessary to surround the
topic with quotation marks.

> 7seq
> ?hh
Error: syntax error, unexpected SPECIAL in " 7%4"

#display help for sequence function

The second version (below) produces the help topic.

> ?Il%%ll
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TABLE 1.3: R Syntax and Functions for Vectors and Matrices

Description R symbol Example

Zero vector numeric(n) x <- numeric(n)
integer(n) x <- integer(n)
rep(0,n) x <- rep(0,n)

Zero matrix matrix(0,n,m) x <- matrix(0,n,m)

it element of vector a alil ali] <=0

jth column of a matrix A AL, ;5] sum(A[,j]1)

i7" entry of matrix A Ali,j] x <- A[i,j]

Matrix multiplication yAYA a %*h b

Elementwise multiplication * ax*b

Matrix transpose t t(4)

Matrix inverse solve solve(A)

Diagonal diag diag(A)

In RStudio, “R Help” in the Help menu displays Help in an integrated
browser window, with hyperlinks. Alternately the function help.start() en-
tered at the command prompt will display a summary of topics in html format
with links.

Another way to search for help on a topic is help.search(). This and
the search engine in Html help may help locate several relevant topics. For
example, if we are searching for a method to compute a permutation,

help.search("permutation")

produces two results: order and sample. We can then consult the help topics
for order and sample. The help topic for sample shows that x is sampled
without replacement (a permutation of the elements of vector x) by:

sample (x) #permutation of all elements of x
sample(x, size=k) #permutation of k elements of x

(If the goal was to count permutations, and evaluate (n%lk)l’ we want
?Special, a list of special functions including factorial and gamma.)

Many help files end with executable examples. The examples can be copied
and pasted at the command line. To run all the examples associated with
topic, use example(topic). See for example the interesting set of examples
for density. To run all the examples for density, type example(density).
To see one example, open the help page, copy the lines and paste them at the
command prompt.

help(density)
# copy and paste the lines below from the help page

# The 01d Faithful geyser data

d <- density(faithful$eruptions, bw = "sj")
d

plot(d)
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A list of available data sets in the base and loaded packages is displayed by
data(), and documentation on a loaded data set is displayed by the associated
help topic For example, help("faithful") displays the Old Faithful geyser
data help topic. If a package is installed but not yet loaded, specify the name
of the package. For example, help("geyser", package = MASS) displays
help for the dataset geyser without loading the MASS package [293]. Alter-
nately, MASS: :geyser will access the geyser data from the MASS package.
For example, to get the summary of this data:

> summary (MASS: :geyser)

waiting duration
Min. : 43.00 Min. :0.8333
1st Qu.: 59.00 1st Qu.:2.0000
Median : 76.00 Median :4.0000
Mean 1 72.31 Mean :3.4608
3rd Qu.: 83.00 3rd Qu.:4.3833
Max. :108.00 Max. :5.4500

1.6 Distributions and Statistical Tests

There are dozens of probability distributions and statistical tests imple-
mented in the R stats package, which is automatically available when using
R. To use the integrated help system to search for a list of what is available,
search for the keyword “Distributions.” This search should find a manual page
that lists all of the available probability distributions included in stats when
R is installed. Other distribution functions may be available in external pack-
ages.

To search for statistical tests implemented in R stats, it is easiest to use
the wildcard type of search help.search("keyword", package="stats").
This restricts the search to the stats package so that we only see the results
in that package. It is helpful to know that test functions in R are named in
this pattern: “name.test”. For example, Pearson’s chisquared test function is
chisq.test. A wildcard search ending in “test” should find all of the test
functions.

For example, try the following searches.

help.search("distribution", package="stats")
help.search(".test", package="stats")

The above search for “distribution” displays a list of links to help pages
for statistical distributions in stats, along with a few other distribution-related
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functions such as the empirical distribution function (ecdf). There is also a
link to the “Distributions” manual page.

The search for “test” displays a list of links to help pages for over 30
statistical tests implemented in R stats. The list includes t.test (Student’s
T test), cor.test (correlation test), prop.test (tests for proportions), and
many other commonly used tests. See Example 1.7 for an application of the
Wilcoxon rank sum test.

1.7 Functions

The syntax for a function definition is

function( arglist ) expr
return(value)

Many examples of functions are documented in the chapter “Writing your
own functions” of the manual [294].

Example 1.1. Here is a simple example of a user-defined R function that
“rolls” n fair dice and returns the sum.

sumdice <- function(n) {
k <- sample(1:6, size=n, replace=TRUE)
return(sum(k))

}
The function definition can be entered by several methods.

1. Typing the lines at the prompt, if the definition is short.
2. Copy from an editor and paste at the command prompt.

3. Save the function in a script file and source the file.

Note that the IDE provides an editor and toolbar for submitting code. Once
the user-defined function is entered in the workspace, it can be used like other
R functions.

#to print the result at the console
> sumdice(2)
(11 9

#to store the result rather than print it
a <- sumdice(100)

#we expect the mean for 100 dice to be close to 3.5
> a / 100
[1] 3.59
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The value returned by an R function is the argument of the return state-
ment or the value of the last evaluated expression. The sumdice function could
be written as

sumdice <- function(n)
sum(sample(1:6, size=n, replace=TRUE))

Functions can have default argument values. For example, sumdice can be
generalized to roll s-sided dice, but keep the default as 6-sided. The usage is
shown below.

sumdice <- function(n, sides = 6) {
if (sides < 1) return (0)
k <- sample(l:sides, size=n, replace=TRUE)
return(sum(k))

}

> sumdice(5) #default 6 sides
[1] 12

> sumdice(n=5, sides=4) #4 sides
[1] 14

The body of a function can be as short as one line, like the first sumdice
function above, or have many lines. The function body must be enclosed in
braces when it has more than one line.

An easy way to display the list of arguments to a function is args. Try for
example args(sample). If you have coded the function sumdice above, try
args (sumdice). o

1.8 Arrays, Data Frames, and Lists

Arrays, data frames, and lists are some of the objects used to store data
in R. A matrix is a two-dimensional array. A data frame is not a matrix,
although it can be represented in a rectangular layout like a matrix. Unlike
a matrix, the columns of a data frame may be different types of variables.
Arrays contain a single type.

Data Frames

A data frame is a list of variables, each of the same length but not neces-
sarily of the same type. In this section we will discuss how to extract values
of variables from a data frame.

Example 1.2 (Iris data). The Fisher iris data set gives four measurements
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on observations from three species of iris. The first few cases in the iris data
are shown below.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa

The iris data is an example of a data frame object. It has 150 cases in rows
and 5 variables in columns. After loading the data, variables can be referenced
by $name (the column name), by subscripts like a matrix, or by position using
the [[ 1] operator. The list of variable names is returned by names. Some
examples with output are shown below.

> names (iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[6] "Species"

> table(iris$Species)

setosa versicolor virginica

50 50 50
> w <- iris[[2]] #Sepal.Width
> mean (w)

[1] 3.057333

Alternately, the data frame can be attached and variables referenced di-
rectly by name. If a data frame is attached, it is a good practice to detach it
when it is no longer needed, to avoid clashes with names of other variables.

> attach(iris)

> summary(Petal.Length[51:100]) #versicolor petal length
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 4.00 4.35 4.26 4.60 5.10

with and by

If we only need the iris data temporarily, we can use with. The syntax
in this example would be

with(iris, summary(Petal.Length[51:100]))

However, with does not make changes outside of its local scope. It is best
used for displaying or printing results. We can, however, assign the value of
the evaluated expression to an object to save it.

out <- with(iris, summary(Petal.Length[51:100]))

Suppose we wish to compute the means of all variables, by species. The
first four columns of the data frame can be extracted with iris[,1:4]. Here
the missing row index indicates that all rows should be included. The by
function easily computes the means by species.
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> by(iris[,1:4], Species, colMeans)

Species: setosa

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.006 3.428 1.462 0.246

Species: versicolor
Sepal.Length Sepal.Width Petal.Length Petal.Width
5.936 2.770 4.260 1.326

Species: virginica
Sepal.Length Sepal.Width Petal.Length Petal.Width
6.588 2.974 5.552 2.026

> detach(iris)

R Note 1.4

Although iris$Sepal.Width, iris[[2]], and iris[ ,2] all produce
the same result, the $ and [[ 1] operators can only select one element,
while the [ ] operator can select several. See the help topic Extract.

Arrays and Matrices

An array is a multiply subscripted collection of a single type of data. An
array has a dimension attribute, which is a vector containing the dimensions
of the array.

Example 1.3 (Arrays). Different arrays are shown. The sequence of numbers
from 1 to 24 is first a vector without a dimension attribute, then a one-
dimensional array, then used to fill a 4 by 6 matrix, and finally a 3 by 4 by 2
array.

x <- 1:24 # vector

dim(x) <- length(x) # 1 dimensional array
matrix(1:24, nrow=4, ncol=6) # 4 by 6 matrix

x <- array(1:24, c(3, 4, 2)) # 3 by 4 by 2 array

The 3 x 4 x 2 array defined by the last statement is displayed below.

[,11 [,2]1 [,31 [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
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[,11 [,2]1 [,3] [,4]
[1,1] 13 16 19 22
2,1 14 17 20 23
[3,] 15 18 21 24

The array x is displayed showing x[, , 1] (the first 3 x 4 elements) followed
by x[, , 2] (the second 3 x 4 elements). o

A matrix is a doubly subscripted array of a single type of data. If A is a
matrix, then A[i, j] is the ij-th element of A, A[, j] is the j-th column
of A, and A[i, ] is the i-th row of A. A range of rows or columns can be
extracted using the : sequence operator. For example, A[2:3, 1:4] extracts
the 2 x 4 matrix containing rows 2 and 3 and columns 1 through 4 of A.

Example 1.4 (Matrices). The statements
A <- matrix(0, nrow=2, ncol=2)
A <- matrix(c(0, 0, 0, 0), nrow=2, ncol=2)

A <- matrix(0, 2, 2)

all assign to A the 2 x 2 zero matrix. Matrices are filled in column major order
by default; that is, the row index changes faster than the column index. Thus,

A <- matrix(1:8, nrow=2, ncol=4)

1 3 5 7
2 4 6 8|

If necessary, use the option byrow=TRUE in matrix to change the default. o

stores in A the matrix

Example 1.5 (Iris data: Example 1.2, cont.). We can convert the first four
columns of the iris data to a matrix using as.matrix.

> x <- as.matrix(iris[,1:4]) #all rows of columns 1 to 4

> mean(x[,2]) #mean of sepal width, all species
[1] 3.057333

> mean(x[51:100,3])  #mean of petal length, versicolor
[1] 4.26

It is possible to convert the matrix to a three-dimensional array, but arrays
(and matrices) are stored in “column major order” by default. For arrays,
“column major” means that the indices to the left are changing faster than
indices to the right. In this case it is easy to convert the matrix to a 50 x 3 x 4
array, with the species as the second dimension. This works because in the
data matrix, by column major order, the iris species changes faster than the
variable name (column).



Introduction 17

> y <- array(x, dim=c(50, 3, 4))

> mean(yl[,,2]) #mean of sepal width, all species
[1] 3.057333

> mean(y[,2,3]) #mean of petal length, versicolor
[1] 4.26

It is somewhat more difficult to produce a 50 x 4 x 3 array of iris data, with
species as the third dimension. Here is one approach. First the matrix is sliced
into three blocks of 50 observations each, corresponding to the three species.
Then the three blocks are concatenated into a vector length 600, so that species
is changing the slowest, and observation (row) is changing fastest. This vector
then fills a 50 x 4 x 3 array.

> y <- array(c(x[1:50,], x[51:100,], x[101:150,]), dim=c(50,4,3))
> mean(y[,2,]) #mean of sepal width, all species

[1] 3.057333

> mean(y[,3,2]) #mean of petal length, versicolor

[1] 4.26

This array is provided in R as the data set iris3. o

Lists

A list is an ordered collection of objects. The members of a list (the com-
ponents) can be different types. Lists are more general than data frames; in
fact, a data frame is a list with class “data.frame”. A list can be created by
the 1ist () function.

Some functions return list objects. Two examples are shown below; the
run length encoding function rle in Example 1.6 and the Wilcoxon test in
Example 1.7.

Example 1.6 (Run length encoding). Consider a coin flipping experiment.
A “run” is a sequence of heads or tails. It is known that the maximum run
length in a sequence of n Bernoulli trials (p = 0.5) should be about loga(n).
The R function rle computes run lengths for a sequence of Bernoulli trials.
We can simulate 1000 independent flips of a fair coin using the R Binomial
random generator function rbinom.

n <- 1000
x <- rbinom(n, size = 1, prob = .5)
table(x)
> x
0 1
520 480

Here we can assign outcome 1 to heads and 0 to tails. We are interested in
the pattern of runs of heads and tails; in particular, we are interested in the
distribution of run lengths. The first part of the sequence can be shown with
the head function.
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> head(x, 30)
[11 0011011110001 01011011010000010

The value returned by rle has two components: lengths and values.

r <- rle(x)

> str(r)

List of 2
$ lengths: int [1:483] 2214311112 ...
$ values : int [1:483] 01 01010101

- attr(x, "class")= chr "rle"

The R structure function str is very helpful when we want information about
a list object. To extract one of the components, we can use the dollar sign and
name of the component or double bracket and position.

> head(r$lengths)
[11 221431
> head(r[[1]1)
[11 221431

Is the maximum run length in this example approximately equal to log,(n)?

> max(r$lengths)
(11 10

> log2(length(x))
[1] 9.965784

<

Lists are frequently used to return several results of a function in a single
object. Several classical hypothesis tests that return class htest are a good
example. See for example the help topic for t.test or chisq.test. Refer
to the “Value” section of the documentation. The value returned is a list
containing the test statistic, p-value, etc. The components of a list can be
referenced by name using $ or by position using [[ 1].

Example 1.7 (Named list). The Wilcoxon rank sum test is implemented in
the function wilcox.test. Here the test is applied to two normal samples
with different means.

w <- wilcox.test(rnorm(10), rnorm(10, 2))
>w #print the summary

Wilcoxon rank sum test

data: rnorm(10) and rnorm(10, 2)

W = 2, p-value = 4.33e-05

alternative hypothesis:

true location shift is not equal to O
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> w$statistic #stored in object w
W2

> w$p.value

[1] 4.330035e-05

Try unlist (w) and unclass(w) to see more details. o

Some examples of functions in this book that return a named list can be
found in Examples 8.13, 12.12, and 14.7.

Example 1.8 (A list of names). Below we create a 1ist to assign row and
column names in a matrix. The first component for row names will be NULL
in this case because we do not want to assign row names.

a <- matrix(runif(8), 4, 2) #a 4x2 matrix
dimnames(a) <- list(NULL, c("x", "y"))

Here is the 4 x 2 matrix with column names (type a to display it).

X y
[1,]1 0.88009604 0.6583918
[2,] 0.32964955 0.1385332
[3,] 0.61625490 0.1378254
[4,]1 0.08102034 0.1746324

1,

3

**

if we want row names
dimnames(a) <- list(letters[1:4], c("x", "y"))
a

vV Vv

x y
0.88009604 0.6583918
0.32964955 0.1385332
0.61625490 0.1378254
0.08102034 0.1746324

a0 oo

**

another way to assign row names
row.names(a) <- list("NE", "NW", "SW", "SE")
> a

\

X y
NE 0.88009604 0.6583918
NW 0.32964955 0.1385332
SW 0.61625490 0.1378254
SE 0.08102034 0.1746324
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1.9 Formula Specification

Some functions in R take a formula object as an argument. Examples
include the function to fit linear models (1m) and certain graphics functions
like boxplot. For example, a formula for simple linear regression of response
variable y on a single predictor x is specified by y ~ x, which represents the
model y = By+P1x+¢. To specify the regression model y = fx+¢, without an
intercept term, the formulaisy ~ 0 + x. For example, compare the following
regression models for the rock data:

Im(rock$peri ~ rock$area)
Im(rock$peri ~ 0 + rock$area)
Im(rock$peri ~ 1 + rock$area)

The formula syntax can represent more complicated models with several
terms, interactions, etc. The syntax is based on Wilkinson’s notation [319].
See Hastie [44, Section 2.2] for its implementation in S and R languages, or
[198] for an online version of documentation for Wilkinson notation.

In Section 1.10, parallel boxplots are generated using the formula argument
to boxplot. Several examples of formulas for linear models are in Section 8.5
and Chapter 9.

1.10 Graphics

The R graphics package contains most of the commonly used graphics
functions. In this section, for reference, some of the graphics functions and
options or parameters are listed. Examples of graphics and the R code used
to produce them appear throughout the text. See Chang [47] and Murrell
[213] for many more examples. Maindonald and Braun [189]), and Venables
and Ripley [293] also have many examples of graphics in R.

Table 1.4 lists some basic 2D graphics functions in R (graphics) and other
packages. Several examples using the graphics functions in Table 1.4 are given
throughout the text. See Table 5.1 and the examples of Chapter 5 for more
2D graphics functions and some 3D visualization methods.
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TABLE 1.4:

Some Basic Graphics Functions in R

(graphics) and Other Packages

Method

in (graphics) in (package)

Scatter plot

Add regression line to plot
Add reference line to plot
Reference curve
Histogram

Bar plot

Plot empirical CDF

QQ Plot

Normal QQ plot

QQ normal ref. line

Box plot

Stem plot

plot
abline
abline
curve
hist
barplot
plot.ecdf
qgplot
qqnorm
qqline
boxplot
stem

truehist (MASS)

qqmath (lattice)

R Note 1.5 ggplot

What are the ggplot versions of the basic graphics listed in Table
1.47 Graphics in ggplot2 do not correspond to single purpose functions
like hist or boxplot, so there is no single ggplot2 function that can
be listed in Table 1.4 for individual plots. All of the ggplot2 graphics
use the ggplot function to start a new plot. The type of plot and its
appearance are determined by the plot aesthetics and elements called
geoms, such as geom_point, geom_line, geom_boxplot, etc. See Sec-
tion 1.11 for some simple examples using ggplot.

Example 1.9 (Parallel boxplots). The boxplot function can display a sin-
gle boxplot or a group of parallel boxplots. Parallel boxplots are helpful for
comparing the distribution of a continuous or quantitative variable by groups.
The group variable should be a factor or a character vector.

Figure 1.2 displays parallel boxplots of the iris data sepal length measure-
ments by the factor Species. The code to generate the plot uses the model
formula argument corresponding to a one-way analysis of variance. The second
line, which includes some optional arguments, corresponds to Figure 1.2.

boxplot (iris$Sepal.Length ~ iris$Species)

boxplot (iris$Sepal.Length ~ iris$Species,
ylab = "Sepal Length", boxwex = .4)

See Example 1.13 for a similar plot using ggplot. o



22 Statistical Computing with R

. = =T
= L

Sepal Length
TN I T T T |

45 55 65 75

T T T
setosa versicolor virginica

FIGURE 1.2: Parallel boxplots of iris sepal length.

Colors, plotting symbols, and line types

In most plotting functions, colors, symbols, and line types can be specified
using col, pch, and 1ty. The size of a symbol is specified by cex. Available
plotting characters are shown in the manual [294, Ch. 12], which includes this
example for displaying plotting characters in a legend.

plot.new() #if a plot is not open
legend(locator(1l), as.character(0:25), pch=0:25)
#then click to locate the legend

The example above can be used to display line types, by substituting 1ty for
pch. The following produces a display of colors.

legend(locator(1l), as.character(0:8), lwd=20, col=0:8)
Other colors and color palettes are available. For example,

plot.new()
palette(rainbow(15))
legend(locator (1), as.character(1:15), lwd=15, col=1:15)

puts a 15-color rainbow palette into effect and displays the colors. Use
colors() to see the vector of named colors.

Most of the figures in this text have been drawn in black and white or
grayscale. Where color palettes would normally be used, we have substituted
a grayscale palette. In these cases, on screen it is better to substitute one of
the pre-defined color palettes or a custom palette. To define a color palette,
refer to 7palette, and to use a defined color palette, see the topic ?rainbow
(the topics rainbow, heat.colors, topo.colors, and terrain.colors are
documented on the same page.)

Example 1.10 (Plotting characters and colors). It is easy to display a table
of plotting characters for reference.

plot(0:25, rep(l, 26), pch = 0:25)
text(0:25, 0.9, 0:25)
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To display the symbols in color, insert col = 0:25. o

A utility to display available colors in R is show.colors() in the DAAG
package [189].

Setting the graphical parameter par (ask = TRUE) has the effect that the
graphics device will wait for user input before displaying the next plot; e.g.,
the message “Waiting to confirm page change ... ” appears, and in the IDE
the user should click on the graphics window to display the next screen. To
turn off this behavior, type par(ask = FALSE).

1.11 Introduction to ggplot

ggplot2 [313] is an R graphics package that is quite different from the
standard graphics package that comes with the R distribution. The name
refers to the “grammar of graphics” introduced by Leland Wilkinson. Spoken
and written language has a grammar and syntax, and it is possible to view
statistical graphics as having similar structure or grammar.

What are the graphical counterparts of the building blocks of language
(nouns, verbs, adjectives, etc.)? What is a graphic in this context? To learn
ggplot2 requires a basic understanding of this grammar of graphics.

In general, a graphic is a mapping of data to some visual elements, which
provides a visual summary of the data. One big difference between R, graphics
and ggplot2 is the way that the mapping is specified.

R graphics define a dedicated function to create a particular mapping. For
example, there is one function for a barplot, another for a boxplot and another
for plotting curves. The package ggplot2 takes a different approach by first
identifying the data to plot, and a geometric object called a “geom” (what to
draw). The aesthetics (aes) provide the mapping that connect the data to the
visual objects. These ideas may be easier to understand with reference to an
example. Install the package ggplot2 if it is not already installed.

The run length encoding data in Example 1.6 should be easy to summarize
in a barplot. It is a good example to illustrate some fundamental differences
in R graphics vs. ggplot.

Example 1.11 (Barplot for run lengths). For an R barplot, we only need to
specify a count variable for the heights of the bars. With ggplot, we must have
the variable in a data frame and for the graphical object geom_bar it must
be a factor or a character, and it must be mapped using the aes aesthetics
function.

barplot (table(r$lengths)) #R graphics version

## ggplot version
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library(ggplot2)
df <- data.frame(lengths = factor(r$lengths))
gegplot(df, aes(lengths)) + geom_bar()

See Figures 1.3(a) (R graphics version) and 1.3(b) (ggplot version) for a com-
parison of the two basic barplots. o
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FIGURE 1.3: Barplots of count data using R graphics (a) and ggplot (b).

The following example will display several versions of a scatterplot of the
iris sepal width and sepal length data.

Example 1.12. For a minimal example, enter the following line.

ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point ()

Here we have specified the data, a mapping for variables Sepal.Length
and Sepal.Width to a visual object or geom. For a scatterplot we want
geom_point. However, all three species of iris appear with the same color
and symbol in this version, so we cannot see the effect of species. Figure 1.4
(see color insert) was generated by the following:

ggplot(iris, aes(Sepal.Length, Sepal.Width,
color = Species, shape = Species)) + geom_point(size = 2)

In the second version, we added aesthetics to map the data to a color by the
factor Species and different plotting symbols by Species. These aesthetics
are arguments to aes. The size of the symbols was doubled with another
aesthetic, size = 2 in geom_point. Notice that a legend was automatically
added to the graph in this version. o

Properties of data are for example quantitative or qualitative (numeric,
integer, factor, etc.) Properties of the visual objects that may appear on a
graph are their type (points, lines, curves, polygons), appearance (color, size,
symbol), and so on. There are far too many properties of visual objects to list



Introduction 25

45-

4.0- *
.
. . = =
* o0
. .o =
£ 35- se L] Species
=] . o sse o A mE
= e n [ ] * setosa
= * s . ' " Ems m
2 * o0 [ [ ] & versicolor
D 30- ee P A 44 mmm mAnE mm m
3] * A A ALAmas 4 = virginica
man AmEmA a (] [ ]
& A L3 Y -m
s A A L ] L}
25- m oa aam [ ]
n i
. IS N i
- a
20- s
5 B 7 8
Sepal.Length

FIGURE 1.4: Scatterplot of iris data using ggplot.

them all, and it is always possible to invent new ones. These elements are part
of the grammar of graphics.

The main function to create a new ggplot is ggplot (gqplot is a shortcut
that works for some simple plots but not in general). A ggplot is built up in
layers, starting with a base layer. Once the base layer is defined, we can add
layers and elements with a + operation. The main idea is easiest to understand
with a few familiar examples.

Example 1.13 (ggplot: parallel boxplots and violin plots). Example 1.9 uses
the boxplot function to display parallel boxplots for the iris sepal length mea-
surements by species. Parallel boxplots can easily be displayed using ggplot
with the geom geom_boxplot. Parallel violin plots (geom_violin) are similar
to parallel boxplots. A violin plot displays a density estimate reflected on both
sides of an axis, giving it a sort of violin shape. For vertical boxplots or violin
plots:

ggplot(iris, aes(Species, Sepal.Length)) + geom_boxplot()
ggplot(iris, aes(Species, Sepal.Length)) + geom_violin()

For horizontal plots, as shown in Figures 1.5(a) and 1.5(b), add coord_£f1ip().

ggplot(iris, aes(Species, Sepal.Length)) +
geom_boxplot () + coord_flip()

ggplot(iris, aes(Species, Sepal.Length)) +
geom_violin() + coord_flip()

ggplot Facets

Something that ggplot does very well is to construct arrays of plots. When
our data set contains a qualitative variable of type factor, it is helpful to view
relationships across levels of the factor. This is illustrated in Example 1.14.
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FIGURE 1.5: Parallel boxplots and violin plots using ggplot.

Example 1.14 (MPG by engine displacement). This example uses the mpg
data in ggplot2, which records fuel economy data from 1999 and 2008 for 38
models of cars. Use str(mpg) or read the help page to learn about the variables
in mpg. Suppose that we want to plot highway mpg (hwy) as a function of
engine size (displacement displ) for each class of vehicle, and display all
of these plots in an array. In order to compare plots, the z and y axes of
all plots should be identical. With facet_wrap, ggplot handles this detail
automatically and also takes care of labeling the plots.

ggplot (mpg, aes(displ, hwy)) +
geom_point () +
facet_wrap(~ class)

The symbol before class is a tilde (as used in other R formulas). The variable
in facet_wrap should be a factor or character type. Here class is a character
vector. The plot is shown in Figure 1.6 o

More examples of plots using ggplot2 will be shown throughout the chap-
ters of this book.

1.12 Workspace and Files

The workspace in R contains data and other objects. User-defined objects
created in a session will persist until R is closed. If the workspace is saved
before quitting R, the objects created during the session will be saved. It is
not necessary to save the workspace for the examples and code here.

The 1s command will display the names of objects in the current
workspace. One or more objects can be removed from the workspace by the
rm or remove command. For more information, consult the R documentation.

RStudio displays information about objects in the global environment
in the ‘Environment’ tab of one of its four panes. This provides a more
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FIGURE 1.6: Array of plots of highway mpg as a function of engine dis-
placement, by class of vehicle.

user-friendly interface to inspecting and possibly removing objects from the
workspace. If the object has a magnifying glass icon or a spreadsheet-like
icon at right, click on the icon to open a window with detailed information
about the object. In Grid view check boxes appear that make it easy to re-
move checked objects using the broom button. To remove all objects, click the
broom while in List view or with no objects selected.

Note that saving objects in the workspace can lead to unexpected results
and serious hidden programming errors. For example, in the following, sup-
pose that the programmer intended to randomly generate the value of b, but
accidentally omitted the code.

y <= runif (100, 0, b)
Now, if an object named b happens to be found in the workspace, and the
value of b produces a valid expression in runif, no error will be reported. An
error will occur, but the programmer will not realize that it has occurred.

It is recommended that the user occasionally check what is stored in the
workspace, and remove unneeded objects. The entire list of objects returned
by 1s() can be removed (without warning!) by rm(list = 1s()). However,
whenever one is using RStudio to run R interactively, it is much easier to use
the Environment tab described above.

In general, it is probably a bad practice to save functions in the workspace,
because the user may forget that certain objects exist and these objects are
either not documented at all or only through comments. It is a better idea to
save functions in scripts and data in files. Collections of functions and data
sets can also be organized and documented in packages. (See Sections 1.13
and 1.14 below.)
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R Note 1.6

RStudio and the knitr package provide a great user interface for devel-
oping code that is seamlessly integrated within a R Markdown report.
Whenever knitr “knits” a document, it runs code within a clean envi-
ronment so that even if objects exist in the global environment shown
in RStudio, knitr is not affected by them. This is a good thing - but
it sometimes causes confusion. Perhaps one has written R code which
seems to work perfectly, but when it is part of a report it stops with
an error. When code “works” at the command line (interactively) but
refuses to “knit,” this is usually caused by objects in the global envi-
ronment; it is a (hidden) programming error that knitr caught.

1.12.1 The Working Directory

Many scripts and data sets are provided, and many will be created by
users. It is convenient to create a folder or directory with a short path name
to store these files. In the examples, we assume that the files are located in
/Rfiles, which will be created by the user. Any other name or path can be
used.

Although it is not necessary to specify the working directory, sometimes
it may be convenient to do so. A user can get or set the current working
directory by the commands getwd and setwd. To set the working directory to
“/Rfiles”, for example, the command is setwd ("/Rfiles").

An easy way to change the working directory in RStudio is through the
“Session” submenu “Set Working Directory.”

1.12.2 Reading Data from External Files

Often data to be analyzed is stored in external files. Typically, data is
stored in plain text files, delimited by white space such as tabs or spaces, or
by special characters such as commas.

Univariate data from an external file can be read into a vector by the scan
command. If the file contains a data frame or a matrix, or is csv (comma sepa-
rated values) format, use the read.table function. The read.table function
has many options to support different file formats. The read. csv function has
defaults convenient for reading csv format files.

Example 1.15 (Import data from a local text file). This is a simple exam-
ple that applies to the data files in Hand et al. [134]. The data files can be
downloaded from the publisher web page www.crcpress.com; search by title
“Handbook of Small Data Sets” to locate “DOWNLQOAD.zip”. Download and
extract the files to your preferred location. The following line then reads the
file “FOREARM.DAT” after it has been saved to your working directory.


http://www.crcpress.com
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forearm <- scan(file = "FOREARM.DAT") #a vector

If the file is not in your current working directory, or it is in a subdirectory,
specify the path name. Suppose that your file is in the “DATASETS” subdi-
rectory.

> forearm <- scan(file = "./DATASETS/FOREARM.DAT") #a vector
Read 140 items

> print(forearm)

[1] 17.3 18.4 20.9 16.8 18.7 20.5 17.9 20.4 18.3 ...

Windows users note the unix style forward slashes in the path name below.
See the R for Windows FAQ [236].

For a short data file, we could print it to check the import. Most data files
will be too long to read at the console, so the head function is an easy way to
view the first few observations.

> head(forearm)
[1] 17.3 18.4 20.9 16.8 18.7 20.5

<

For text files of data with more than one variable, it is easier to use
read.table to import the data. Read the help page for read.table to review
possible format specifications, and set them to match the format of the data
file (headings, separators, etc.). The file argument in read.table (or scan)
could optionally be a connection, such as the URL of a web page.

Example 1.16 (Importing data from a web page). To read data directly
from a web page, the URL can be specified as the file argument. View the
data online, then match the read.table arguments to the format.

Here we will import the auto mpg data from the UCI Machine Learn-
ing Repository [216] at https://archive.ics.uci.edu/ml/index.php. The
data is described at https://archive.ics.uci.edu/ml/datasets/auto+
mpg including a link to the data folder. The file name is “auto-mpg.data”.

The file does not have a header (column names) or row names and it
appears to be delimited by spaces or tabs. Missing values are coded 7, so we
need to change the missing value symbol na.strings = "NA" to na.strings
= "?"  Also, we do not want the car name to be a factor, so we set as.is =
TRUE to import it as a string.

fileloc <- "https://archive.ics.uci.edu/ml/machine-learning-databases/
auto-mpg/auto-mpg.data"

df <- read.table(file = fileloc, na.strings = "?", as.is = TRUE)

After importing data, it is a good practice to check that the result is as ex-
pected. Two helpful functions for this are str and head. The structure function
str summarizes the data object, and head returns the first few observations:


https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://archive.ics.uci.edu
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> str(df)
’data.frame’: 398 obs. of 9 variables:

©*

@B P P P H H L B

Vi:
vV2:
V3:
V4.
V56:
V6:
V7:
v8:
V9:

num
int
num
num
num
num
int
int
chr
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18 15 18 16 17 15 14 14 14 15 ...
8888888888 ...

307 350 318 304 302 429 454 440 455 390 ...

130 165 150 150 140 198 220 215 225 190 ...
3504 3693 3436 3433 3449 ...

12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...

70 70 70 70 70 70 70 70 70 70 ...
1111111111 ...

"chevrolet chevelle malibu" "buick skylark 320"

The structure function str tells us that this object is a data frame with
398 observations of 9 variables, the type of each variable, and shows the first
few values for each variable.

We assign variable names and print the summary:

names(df) <- C(Ilmpgll’ "Cyl", "diSpl", Ilhpll, "Wt", llaccelll’

"year", "origin", '"name")
summary (df)
mpg cyl displ hp

Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0
1st Qu.:17.50 1st Qu.:4.000 1st Qu.:104.2 1st Qu.: 75.0
Median :23.00 Median :4.000 Median :148.5 Median : 93.5
Mean :23.51 Mean :5.455 Mean :193.4 Mean :104.5
3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:262.0 3rd Qu.:126.0
Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0

NA’s 16

<

The help topic for read.table also contains documentation for read.csv
and read.delim, for reading comma-separated-values (.csv) files and text files
with other delimiters.

R Note 1.7

By default, read.table will convert character variables to factors. To
prevent conversion of character data to factors, set as.is = TRUE (also
see the colClasses argument of read.table).

One of the recommended R packages included with the distribution is
the foreign package, which provides several utility functions for reading
files in Minitab, S, SAS, SPSS, Stata, and other formats. For details type
help(package = foreign).
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1.12.3 Importing/Exporting .csv Files

Data is often supplied in comma-separated-values (.csv) format, which is a
text file that separates data with special text characters called delimiters. Files
in .csv format can be opened in most spreadsheet applications. Spreadsheet
data should be saved in .csv format before importing into R. In a .csv file, the
dates are likely to be given as strings, delimited by double quotation marks.

Example 1.17 (Importing/exporting .csv files). This example illustrates how
to export the contents of a data frame to a .csv file, and how to import the
data from a .csv file into an R data frame.

#create a data frame

dates <- c("3/27/1995", "4/3/1995",
"4/10/1995", "4/18/1995")

prices <- c(11.1, 7.9, 1.9, 7.3)

d <- data.frame(dates=dates, prices=prices)

#create the .csv file

filename <- "temp.csv"

write.table(d, file = filename, sep = ",",
row.names = FALSE)

The new file “temp.csv” can be opened in most spreadsheets. When displayed
in a text editor (not a spreadsheet), the file “temp.csv” contains the following
lines (without the leading spaces).

"dates","prices"
"3/27/1995",11.1
"4/3/1995",7.9
"4/10/1995",1.9
"4/18/1995",7.3

Most .csv format files can be read using read.table. In addition there are
functions read.csv and read.csv2 designed for .csv files.

#read the .csv file
read.table(file = filename, sep = ",", header = TRUE)
read.csv(file = filename) #same thing

dates prices
1.3/27/1995 11.1
2 4/3/1995 7.9
3 4/10/1995 1.9
4 4/18/1995 7.3

See as.Date for converting the character representation of the dates to date
objects. o
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1.13 Using Scripts

R scripts are plain text files containing R code. Once code is saved in a
script, all of it can be submitted via the source command, or part of it can
be executed by copy and paste (to the console).

To save R commands in a file, prepare the file with a plain text editor and
save with extension .R. RStudio provides an integrated text editor. The File
menu “New File” submenu opens a new script (or other types of files). If an
R script is open in the editor, a “Run” menu and a “Source” button appear
on the toolbar of the editor window.

The RStudio “Source” button, or the R source command, loads and ex-
ecutes the commands in the script. It is not necessary to close the file, and
in fact, it may be convenient to keep it open for editing. Save changes before
sourcing the file. For example, if “/Rfiles/example.R” is a file containing R
code, the command

source("/Rfiles/example.R")

will enter all lines of the file at the command prompt and execute the code.
Windows users should use the unix-style forward slashes above or double
backslashes like the command below.

source ("\\Rfiles\\example.R")

The source command is useful when my script requires functions that are
defined in another R script. Simply source that file before the functions are
required.

Note that by default, evaluations of expressions are not printed at the
console when a script is running. Use the print command within a script to
display the value of an expression.

Thus, in interactive mode, an expression and its value are both printed

> sqrt(pi)
[1] 1.772454

but from a script it is necessary to use print(sqrt(pi)).

Alternately, set options in the source statement to control how much is
printed. By setting echo=TRUE the statements and evaluation of expressions
are echoed to the console. To see evaluation of expressions but not statements,
leave echo=FALSE and set print.eval=TRUE. The examples are below.

source("/Rfiles/example.R", echo=TRUE)
source("/Rfiles/example.R", print.eval=TRUE)
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1.14 Using Packages

The R installation consists of the base and several recommended packages.
Type library() to see a list of installed packages or click on the Packages
tab in RStudio. A package must be installed and loaded to be available. Base
packages are automatically loaded. Other packages can be installed and loaded
as needed.

Several of the recommended packages are used in this text. Some con-
tributed packages are also used. The R system provides an interface to in-
stall contributed packages from CRAN as needed (see install.packages).
In RStudio, the Packages tab “Install” button provides a dialog to select the
packages and install them. A frequent error is the ‘Object not found’ error,
which can occur when a symbol is used from a package that is not available.
If this error occurs, check spelling, then check that the package containing the
object is loaded.

To load an installed package, use the library or require command. For
example, to load the recommended package boot, type library(boot) at the
command prompt. If the package is loaded, the help system for the package
is also loaded. Typing the command help(package=boot) or clicking on the
name of the package in RStudio’s Package tab will bring up a window showing
the contents of the package. Once the package is loaded, typing ?boot will
bring up the help topic for the boot function in the boot package (if not
loaded, use help(boot, package=boot)).

Another way to use an object from a package without loading it is by
the double colon operator. For example, to use the truehist function in the
MASS package an option is MASS: :truehist.

A complete list of all available packages is provided on the CRAN website.
This list is so large that it may be easier to search for packages using the
CRAN Task Views, which organize packages according to broad topics or
tasks.

1.15 Using R Markdown and knitr

R Markdown is a document format that can be used to dynamically gen-
erate reproducible reports that combine code, output and graphics with your
report document in one step. The knitr package makes it very easy to work
with R Markdown documents in the RStudio development environment. See
the R Markdown website at https://rmarkdown.rstudio.com/. The Help
menu in RStudio also contains a convenient cheatsheet and a reference guide


https://rmarkdown.rstudio.com
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for R Markdown. See also the code demos, tutorials and vignettes provided
with the knitr package [324].

Try Exercise 1.8 and consider using R Markdown to create reports for
other exercises in this book. A worked example is provided at the end of the
book in 15.21.

Exercises

1.1

1.2

1.3

14

1.5

Generate a random sample z1, ..., x99 of data from the ¢4 (df=4) dis-
tribution using the rt function. Use the MASS: :truehist function to
display a probability histogram of the sample.

Add the t4 density curve (dt) to your histogram in Exercise 1.1 using
the curve function with add=TRUE.

Add an estimated density curve to your histogram in Exercise 1.2 using
density. For example,

lines(density(x), col=2)

will add the density estimate using the color red. Notice that the density
estimate (density) is an approximation to the density of the sampled
distribution (in this case the t4 density). (Density estimation and the
density function are covered in detail in Chapter 12.)

a. Write an R function f in R to implement the function

Tr—a

fa) ="

that will transform an input vector x and return the result. The
function should take three input arguments: x, a, b.

b. To transform x to the interval [0, 1] we subtract the minimum value
and divide by the range:

y <= f(x, a = min(x), b = max(x) - min(x))

Generate a random sample of Normal(y = 2,0 = 2) data using
rnorm and use your function f to transform this sample to the
interval [0, 1]. Print a summary of both the sample x and the trans-
formed sample y to check the result.

Refer to Exercise 1.4. Suppose that we want to transform the x sample
so that it has mean zero and standard deviation one (studentize the
sample). That is, we want




1.6

1.7

1.8
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where s is the standard deviation of the sample. Using your function £
this is
z <- f(x, a = mean(x), b = sd(x))

Display a summary and histogram of the studentized sample z. It should
be centered exactly at zero. Use sd(z) to check that the studentized
sample has standard deviation exactly 1.0.

Using your function f of Exercise 1.4, center and scale your Normal(u =
2,0 = 2) sample by subtracting the sample median and dividing by the
sample interquartile range (IQR). Compare your results to Exercise 1.5.

(ggplot) Refer to Example 1.14 where we displayed an array of scatter-
plots using ggplot with facet_wrap. One of the variables in the mpg
data is drv, a character vector indicating whether the vehicle is front-
wheel drive, rear-wheel drive, or four-wheel drive. Add color = drv in
aes:

aes(displ, hwy, color = drv)

and display the revised plot. Your scatterplots should now have the three
levels of drv coded by color and the plot should have automatically
generated a legend for drv color.

(RStudio and knitr) This exercise is intended to serve as an introduction
to report writing with R Markdown. Install the knitr package if it is
not installed. Create an html report using R Markdown and knitr in
RStudio. The report should include the code and output of Examples
1.12 and 1.14 with appropriate headings and a brief explanation of each
example.
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Chapter 2

Probability and Statistics Review

In this chapter we briefly review without proofs some definitions and concepts
in probability and statistics. Many introductory and more advanced texts can
be recommended for review and reference. On introductory probability see
e.g., Bean [26], Ghahramani [124], or Ross [249]. Mathematical statistics and
probability books at an advanced undergraduate or first-year graduate level
include, e.g., DeGroot and Schervish [69], Freund (Miller and Miller) [209],
Hogg, McKean and Craig [150] or Larsen and Marx [177]. Casella and Berger
[40] or Bain and Englehart [21] are somewhat more advanced. Durrett [80] is
a graduate probability text. Lehmann [180] and Lehmann and Casella [181]
are graduate texts in statistical inference.

2.1 Random Variables and Probability
Distribution and Density Functions

The cumulative distribution function (cdf) of a random variable X is Fx
defined by
Fx(z) = P(X < x), z e R.

In this book P(-) denotes the probability of its argument. We will omit the
subscript X and write F'(z) if it is clear in context. The cdf has the following
properties:

1. Fx is non-decreasing.
2. Fx is right-continuous; that is,

lim Fx(x+¢€) = Fx(z), forallz eR.

e—0

3. lim Fx(z)=0 and lim Fx(z)=1

Tr—r—00 Tr—r 00

A random variable X is continuous if F'x is a continuous function. A random
variable X is discrete if Fx is a step function.

Discrete distributions can be specified by the probability mass function
(pmf) px(z) = P(X = z). The discontinuities in the cdf are at the points
where the pmf is positive, and p(x) = F(z) — F(x7).

37
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If X is discrete, the cdf of X is

Fx(z) =P(X <x) = > py (k).
{k<z:p, (k)>0}

Continuous distributions do not have positive probability mass at any single
point. For continuous random variables X the probability density function
(pdf) or density of X is fx(x) = Fi(x), provided that Fx is differentiable,
and by the fundamental theorem of calculus

Fﬂ@:ﬂXﬁ@:[tkwﬁ

The joint density of continuous random variables X and Y is fx y(x,y)
and the cdf of (X,Y) is

y T
Fxy(z,y) = P(X <x;Y <y) = / / fx,y(s,t)dsdt.

The marginal probability densities of X and Y are given by

) = [ T hv@ydy ) = / " ey (e ).

The corresponding formulas for discrete random variables are similar, with
sums replacing the integrals. In the remainder of this chapter, for simplicity
fx(z) denotes either the pdf (if X is continuous) or the pmf (if X is discrete)
of X.

The set of points {z : fx(x) > 0} is the support set of the random vari-
able X. Similarly, the bivariate distribution of (X,Y") is supported on the set

{(z,y) : fxy(z,y) > 0}.

Expectation, Variance, and Moments

The mean of a random variable X is the expected value or mathematical
expectation of the variable, denoted E[X]. If X is continuous with density f,
then the expected value of X is

E[X] = /00 xf(z)dx.
If X is discrete with pmf f(z), then
EX]= >  af(a).

{z: fx(z)>0}

(The integrals and sums above are not necessarily finite. We implicitly assume
that E|X| < oo whenever E[X] appears in formulas below.) The expected
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value of a function g(X) of a continuous random variable X with pdf f is
defined by

Let ux = E[X]. Then px is also called the first moment of X . The r*"* moment
of X is E[X"]. Hence if X is continuous,

E[XT] :/ 2" fx (x)de.
The variance of X is the second central moment,
Var(X) = E[(X — E[X])?].

The identity E[(X — E[X])?] = E[X?] — (E[X])? provides an equivalent for-
mula for variance,

Var(X) = E[X?] - (E[X])* = E[X?] - i%.

The variance of X is also denoted by o%. The square root of the variance is
the standard deviation. The reciprocal of the variance is the precision.

The expected value of the product of continuous random variables X and
Y with joint pdf fx y is

EXY]= /_OO /_00 vy fx v (z,y)dedy.

The covariance of X and Y is defined by

Cov(X,Y) = E[(X — px)(Y — py)]
= E[XY] - E[X]E[Y] = E[XY] — pxpy.

The covariance of X and Y is also denoted by oxy. Note that Cov(X, X) =
Var(X). The product-moment correlation is

p(X,Y) = Cov(X,Y) _ oxv
Var(X)Var(Y) oxoy

Correlation can also be written as

o) = [(F) ()|

Two variables X and Y are uncorrelated if p(X,Y) = 0.
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Conditional Probability and Independence

In classical probability, the conditional probability of an event A given
that event B has occurred is

P(AB)

P(AIB) = 5

where AB = AN B is the intersection of events A and B. Events A and B are
independent if P(AB) = P(A)P(B); otherwise they are dependent. The joint
probability that both A and B occur can be written

P(AB) = P(A|B)P(B) = P(B|A)P(A).

If random variables X and Y have joint density fx y (z,y), then the con-
ditional density of X given Y =y is

fX Y($7 y)
Ixiy=y(x) = ===,
Y (@) fy ()
Similarly the conditional density of Y given X = z is
_ fX,Y(x7 y)
leX:I(y) B fx(x)

Thus, the joint density of (X,Y) can be written
Ixy(x,y) = fx)y=y(@) fy (¥) = fy|x=2(¥)fx(x).

Independence

The random variables X and Y are independent if and only if

fxv(z,y) = fx(@)fy(y)

for all x and y; or equivalently, if and only if Fx y(x,y) = Fx(x)Fy(y), for
all z and y.

The random variables X1, ..., Xy are independent if and only if the joint
pdf f of X1,..., Xy is equal to the product of the marginal density functions.
That is, X1,..., Xy are independent if and only if

d
fay,.za) =[] £il=))
j=1

for all z = (z1,...,24)7 in R? where f;(z;) is the marginal density (or
marginal pmf) of X;.
The variables {X1,...,X,,} are a random sample from a distribution Fx
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if Xy,...,X,, are independently and identically distributed with distribution
Fx. In this case the joint density of {X7,..., X, } is

n

flar,.mn) =[] fx ().

i=1

If X and Y are independent, then Cov(X,Y) =0 and p(X,Y) = 0. How-
ever, the converse is not true; uncorrelated variables are not necessarily inde-
pendent. The converse is true in an important special case: if X and Y are
normally distributed then Cov(X,Y’) = 0 implies independence.

Properties of Expected Value and Variance

Suppose that X and Y are random variables, and a and b are constants.
Then the following properties hold (provided the moments exist).

ElaX +b] = aE[X] +0.

E[X +Y] = E[X] + E[Y].

If X and Y are independent, E[XY] = E[X]E[Y].

Var(b) = 0.

Var[aX +b] = a*Var(X).

Var(X+Y)=Var(X) +Var(Y) +2Cov(X,Y).

If X and Y are independent, Var(X +Y) = Var(X) + Var(Y).

NS O e WD =

If {X1,...,X,} are independent and identically distributed (iid) we have
E[X1++Xn]:n,uX7 Var(X1+...+Xn):TLO'§(7

so the sample mean X = %Z?zl X; has expected value px and variance
0% /n. (Apply properties 2, 7, and 5 above.)
The conditional expected value of X given Y =y is

oo

EX|Y =y] = / fo|y:y(o:)d:E,

— 00

if Fx|y=y(z) is continuous.
Two important results are the conditional expectation rule and the condi-
tional variance formula:

B[X] = B[BX|Y] (2.1)
Var(X) = E[Var(X|Y)] + Var(E[X]|Y]). (2.2)

See for example Ross [248, Ch. 3] for a proof of (2.1, 2.2) and many applica-
tions.
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2.2 Some Discrete Distributions

Some important discrete distributions are the “counting distributions.”
The counting distributions are used to model the frequency of events and
waiting time for events in discrete time, for example. Three important count-
ing distributions are the binomial (and Bernoulli), negative binomial (and
geometric), and Poisson.

Several discrete distributions including the binomial, geometric, and neg-
ative binomial distributions can be formulated in terms of the outcomes of
Bernoulli trials. A Bernoulli experiment has exactly two possible outcomes,
“success” or “failure.” A Bernoulli random variable X has the probability mass
function

P(X=1)=p, P(X=0)=1-p,

where p is the probability of success. It is easy to check that F[X] = p and
Var(X) =p(1 — p). A sequence of Bernoulli trials is a sequence of outcomes
X1, X5, ... of iid Bernoulli experiments.

Binomial and Multinomial Distribution

Suppose that X records the number of successes in n iid Bernoulli tri-
als with success probability p. Then X has the Binomial(n,p) distribution
[abbreviated X ~ Bin(n,p)] with

PX=x)= <Z) p*(l—p) "= z!(nniz)!pm(l -p)"*, x=0,1,...,n.

The mean and variance formulas are easily derived by observing that the
binomial variable is an iid sum of n Bernoulli(p) variables. Therefore,

E[X] = np, Var(X) =np(1l —p).

A binomial distribution is a special case of a multinomial distribution.
Suppose that there are k + 1 mutually exclusive and exhaustive events
Ajq,...,Ap41 that can occur on any trial of an experiment, and each event
occurs with probability P(A4;) =p;, j =1,...,k+1. Let X, record the num-
ber of times that event A; occurs in n independent and identical trials of the
experiment. Then X = (Xi,..., X)) has the multinomial distribution with
joint pdf

. T, T2 Th41 .
flxy,...,zp) = —:C1!:1:2! ! PP’ Py, 0<z; <, (2.3)

k

where zpp1 =n— ) ) ;.



Probability and Statistics Review 43

Geometric Distribution

Consider a sequence of Bernoulli trials, with success probability p. Let
the random variable X record the number of failures until the first success is
observed. Then

P(X =z)=p(1-p)°, x=0,1,2,.... (2.4)

A random variable X with pmf (2.4) has the Geometric(p) distribution [ab-
breviated X ~ Geom(p)]. If X ~ Geom(p), then the cdf of X is

Fx(z)=P(X<z)=1-(1-p)=+ x>0,

and otherwise Fx(z) = 0. The mean and variance of X are given by

1 —
BIX]= =% VarlX] = p2p.

Alternative formulation of Geometric distribution

The geometric distribution is sometimes formulated by letting Y be defined
as the number of trials until the first success. Then Y = X + 1, where X is
the random variable defined above with pmf (2.4). Under this model, we have
PY =y =p(l-p¥ty=12...,and

b

E[Y]:E[X+1]=1P%p+1:

—_ 3|

VarlY]|=Var[X + 1] =VarX]| = —Qp.

p

However, as a counting distribution, or frequency model, the first formulation
(2.4) given above is usually applied, because frequency models typically must
include the possibility of a zero count.

Negative Binomial Distribution

The negative binomial frequency model applies in the same setting as a
geometric model, except that the variable of interest is the number of failures
until the r*" success. Suppose that exactly X failures occur before the 7
success. If X = =, then the r*" success occurs on the (z + 7)** trial. In the
first © +r — 1 trials, there are r — 1 successes and x failures. This can happen
(xjle) = (H;*l) ways, and each way has probability p”¢*. The probability
mass function of the random variable X is given by

r+r—1

P(X:JZ):( r—1 )prqz7 3]‘:071,2,.... (25)
The negative binomial distribution is defined for r > 0 and 0 < p < 1 as

follows. The random variable X has a negative binomial distribution with
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parameters (r,p) if

L+r) .
S Sl N =0,1,2,... 2.6
F(T)F(x+1)p ¢, ©=0,1,2,..., (2.6)

P(X=1z)=
where T'(-) is the complete gamma function defined in (2.8). Note that (2.5)
and (2.6) are equivalent when r is a positive integer. If X has pmf (2.6) we
will write X ~ NegBin(r, p). The special case NegBin(r = 1, p) is the Geom(p)
distribution.

Suppose that X ~ NegBin(r, p), where r is a positive integer. Then X is
the iid sum of r Geom(p) variables. Therefore, the mean and variance of X
given by

E[X]:r1 p, Var[X]:rlTp,
p p

are simply 7 times the mean and variance of the Geom(p) variable in (2.4).
These formulas are also valid for all r > 0.

Note that like the geometric random variable, there is an alternative for-
mulation of the negative binomial model that counts the number of trials until
the r'" success.

Poisson Distribution

A random variable X has a Poisson distribution with parameter A > 0 if
the pmf of X is
Az
e A
p(z) = I z=0,1,2,....

If X ~ Poisson(A), then
EX] =X Var(X) = A

A useful recursive formula for the pmf is p(z + 1) = p(m)%ﬂ, x=0,1,2,....
The Poisson distribution has many important properties and applications (see,
e.g., [133, 164, 250]).

Examples

Example 2.1 (Geometric cdf). The cdf of the geometric distribution with
success probability p can be derived as follows. If ¢ = 1 —p, then at the points
x=0,1,2,... the cdf of X is given by

p(1—g"") 1
P(X < p(1 Ty = =1-—¢"t.
z) qu ta+¢+-+4q%) 4 q
Alternately, P(X < z) =1— P(X > x+ 1) = 1 — P(first x+1 trials are
failures) = 1 — ¢® 1. o
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Example 2.2 (Mean of the Poisson distribution). If X ~ Poisson(\), then

oo oo o0

e—)\)\a: e—k)\w—l e—)\)\az
mm:E;mjgf:AZ;Gijﬁzxzajﬁf:x

The last equality follows because the summand is the Poisson pmf and the
total probability must sum to 1. o

2.3 Some Continuous Distributions
Normal Distribution

The normal distribution with mean p and variance o? [abbreviated
N(u,0?)] is the continuous distribution with pdf

2
flz) = ;ﬁaexp{—;<xo_u> }, —0 < T < 0.

The standard normal distribution N(0,1) has zero mean and unit variance,
and the standard normal cdf is

z
D(z) = / Leftz/2 dt, —00 < z < 00.
oo V2T

The normal distribution has several important properties. We summarize
some of these properties, without proof. For more properties and characteri-
zations see [162, Ch. 13], [221], or [285].

A linear transformation of a normal variable is also normally distributed.
If X ~ N(u,0), then the distribution of Y = aX + b is N(au + b, a%0?). It
follows that if X ~ N(u, o), then

X —
7=""F _ N(,1).
o
Linear combinations of normal variables are normal; if Xq,..., X} are inde-
pendent, X; ~ N(ju;,0?), and ay,...,a; are constants, then

Y=a X1+ 4+ arXs

is normally distributed with mean p= Zle a;jt; and variance 02 = Zle alo?.
Therefore, if X1,...,X,, is a random sample (X1,..., X, are iid) from a

N (u,0?) distribution, the sum Y = X; +- -+ X,, is normally distributed with
E[Y] =np and Var(Y) = no?. It follows that the sample mean X = Y/n has
the N (u,0?/n) distribution if the sampled distribution is normal. (In case the
sampled distribution is not normal, but the sample size is large, the Central
Limit Theorem implies that the distribution of Y is approximately normal.
See Section 2.5.)
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Gamma and Exponential Distributions

A random variable X has a gamma distribution with shape parameter
r > 0 and rate parameter A > 0 if the pdf of X is

r—1_—Az
= F(r) X e s

x>0, (2.7)
where I'(r) is the complete gamma function, defined by

I'(r)= / t" e tdt, r#0,-1,-2,.... (2.8)
0
Recall that T'(n) = (n — 1)! for positive integers n.

The notation X ~ Gamma(r, \) indicates that X has the density (2.7),
with shape r and rate A. If X ~ Gamma(r, \), then

T T
Y Var(X) = e

Gamma distributions can also be parameterized by the scale parameter § =
1/ instead of the rate parameter A. In terms of (r,6) the mean is rf and
the variance is r0?. An important special case of the gamma distribution
is r = 1, which is the exponential distribution with rate parameter A. The
Exponential(\) pdf is

E[X] =

f(z) = e 2, x> 0.
If X is exponentially distributed with rate A [abbreviated X ~ Exp(\)], then

1 1
Y Var(X) = VR

It can be shown that the sum of iid exponentials has a gamma distribution.
If Xy,...,X, are iid with the Exp()\) distribution, then ¥ = X; 4+ --- + X,
has the Gamma(r, A) distribution.

E[X] =

Chisquare and ¢

The Chisquare distribution with v degrees of freedom is denoted by x?(v).
The pdf of a x?(v) random variable X is

1
1@) = 5o

I(V/Q)flefm/a z>0,v=12,...,.

Note that x?(v) is a special case of the gamma distribution, with shape pa-
rameter v/2 and rate parameter 1/2. The square of a standard normal vari-
able has the x2(1) distribution. If Z1,..., Z, are iid standard normal, then
ZE+ -+ 72 ~X3(v). If X ~ x?(v1) and Y ~ x?(vz2) are independent, then
X +Y ~x3(vy + ). If X ~ x%(v), then

E[X] =v, Var(X) = 2v.
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The Student’s ¢ distribution [270] is defined as follows. Let Z ~ N(0, 1)
and V ~ x2(v). If Z and V are independent, then the distribution of

A
VV/iv

has the Student’s ¢ distribution with v degrees of freedom, denoted ¢(v). The
density of a ¢(v) random variable X is given by

f =1

v+1

vty 1
3) reR v=12,...
2

(5) Vo (14 2200

The mean and variance of X ~ t(v) are given by

v
E[X]=0, v>1, Var(X):ﬁ, v>2.
v —
In the special case v = 1, the t(1) distribution is the standard Cauchy distribu-
tion. For small v the ¢ distribution has “heavy tails” compared to the normal
distribution. For large v, the t(v) distribution is approximately normal, and
t(v) converges in distribution to standard normal as v — oc.

Beta and Uniform Distributions

A random variable X with density function

Lla+B8) o -1
flz) = ——"2 20711 — )81, 0<z<1l,a>0,8>0. 2.9
(@) = o o) (29)
has the Beta(a, 8) distribution. The constant in the beta density is the recip-
rocal of the beta function, defined by

b - L(@)l'(8)
— a=1¢1 _ p\B=1 g1 _
Bl B) /O -t = 1.
The continuous uniform distribution on (0,1) or Uniform(0,1) is the special
case Beta(1,1).

The parameters « and g are shape parameters. When a = § the distribu-
tion is symmetric about 1/2. When a # 3 the distribution is skewed, with the
direction and amount of skewness depending on the shape parameters. The
mean and variance are

E[X] =

« ap
St Var(X) = .
P N = @ rers+D
If X ~ Uniform(0, 1) = Beta(1, 1), then E[X] = £ and Var(X) = &.
In Bayesian analysis, a beta distribution is often chosen to model the
distribution of a probability parameter, such as the probability of success in
Bernoulli trials or a binomial experiment.
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Lognormal Distribution

A random variable X has the Lognormal(u,o?) distribution [abbreviated
X ~ LogN(u,0%)]if X = e¥, where Y ~ N(u,0?). That is, log X ~ N(u,c?).
The lognormal density function is

1 2 2
— _ — o (logz—p)*/(207)
T) = e , x> 0.
Ix(@) xV2mo
The cdf can be evaluated by the normal cdf of log X ~ N(u,0?), so the cdf
of X ~ LogN(u,o?) is given by

1 _
FX@):@(W), >0,
o
The moments are
1
E[X"] = E[e™] = exp {7“,11, + 27“202} , r>0. (2.10)

The mean and variance are

E[X] = e"t 2 Var(X) = et (7 — 1),
Examples

Example 2.3 (Two-parameter exponential cdf). The two-parameter expo-
nential density is
flx) = Ae MNemm) x>, (2.11)

where A and 7 are positive constants. Denote the distribution with density
function (2.11) by Exp(A,n). When 1 = 0 the density (2.11) is exponential
with rate .

The cdf of the two-parameter exponential distribution is given by

T z—n
F(.’L‘) = / /\e—)\(t—ﬁ)dt — / )\e—kudu -1 e—>\(l‘—77)7 x>
n 0

In the special case 7 = 0 we have the cdf of the Exp()\) distribution,
F(r)=1—e"", x> 0.
o

Example 2.4 (Memoryless property of the exponential distribution). The
exponential distribution with rate parameter A has the memoryless property.
That is, if X ~ Exp()), then

P(X >s+t|X >s)=P(X >t), foralls,t > 0.
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The cdf of X is F(z) = 1 — exp(—Az), z > 0 (see Example 2.3). Therefore,
for all s,t > 0 we have

P(X>s+t) 1—F(s+t)

PX >s+tX >s)=

P(X>s)  1-F(s)
ef)\(ert) v
= P(X >1t).

The first equality is simply the definition of conditional probability, P(A|B) =
P(AB)/P(B). o

2.4 Multivariate Normal Distribution
The bivariate normal distribution

Two continuous random variables X and Y have a bivariate normal distri-
bution if the joint density of (X,Y) is the bivariate normal density function,
which is given by

) =—— e { ! K"’Cﬂlf
Y 2wo1094/1 — p? P 2(1—-p?) 01

() () () T e

(z,y) € R2. The parameters are py = E[X], uo = E[Y], 0} = Var(X), o3 =
Var(Y), and p = Cor(X,Y). The notation (X,Y) ~ BVN(uy, uz,0%,03, p)
indicates that (X, Y") have the joint pdf (2.12). Some properties of the bivariate
normal distribution (2.12) are:

1. The marginal distributions of X and Y are normal; that is X ~
N(pi1,0%) and ¥ ~ N(jiz, o3).

2. The conditional distribution of Y given X = x is normal with mean
o + poa/or(z — p1) and variance o3(1 — p?).

3. The conditional distribution of X given Y = y is normal with mean
w1+ po1/o2(y — pz2) and variance o%(1 — p?).
4. X and Y are independent if and only if p = 0.

Suppose (X1, X2) ~ BVN(u1, p2, 07,03, p). Let pn = (p1, p2)” and

g g
V= 11 12 ,
021 022



50 Statistical Computing with R

where 0;; = Cov(X;, X;). Then the bivariate normal pdf (2.12) of (X7, X3)
can be written in matrix notation as

1 1 _
f(@1,22) = WGXP{ - g(x_ﬂ)Tz 1(55—#)}7

where x = (11, 22)7 € R2.

The multivariate normal distribution

The joint distribution of continuous random variables X7, ..., Xy is multi-
variate normal or d-variate normal, denoted Ny(u, X), if the joint pdf is given
by

1 1
f($1,~~-axd)_WWGXP{—Q(QU_#)TEl(x_ﬂ)}, (2.13)
where ¥ is the d x d nonsingular covariance matrix of (Xi,..., X)), u =
(1, -+, )T is the mean vector, and x = (21, ...,24)T € R%
The one-dimensional marginal distributions of a multivariate normal vari-
able are normal with mean p; and variance o2, i = 1,...,d. Here o2 is the
it" entry on the diagonal of . In fact, all of the marginal distributions of

a multivariate normal vector are multivariate normal (see, e.g., Tong [288,
Sec. 3.3)).

The normal random variables X7, ..., Xy are independent if and only if
the covariance matrix ¥ is diagonal.

Linear transformations of multivariate normal random vectors are multi-
variate normal. That is, if C' is an m x d matrix and b = (by,...,b,,)T € R™,
then Y = CX + b has the m-dimensional multivariate normal distribution
with mean vector Cu + b and covariance matrix CXC7.

Applications and properties of the multivariate normal distribution are
covered by Anderson [13] and Mardia et al. [194]. Refer to Tong [288] for
properties and characterizations of the bivariate normal and multivariate nor-
mal distribution.

2.5 Limit Theorems
Laws of Large Numbers

The Weak Law of Large Numbers (WLLN) or (LLN) states that the sample
mean converges in probability to the population mean. Suppose that X7, X5 ...
are independent and identically distributed (iid), E|X;| < oo and p = E[X;].
For each n let X, = %Z?:l X;. Then X,, — pu in probability as n — oo.
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That is, for every € > 0,
lim P(|X, —pu|l<e) =1.
n—oo

For a proof, see Durrett [80].

The Strong Law of Large Numbers (SLLN) states that the sample mean
converges almost surely to the population mean p. Suppose that X, Xo, ...
are pairwise independent and identically distributed, F|X;| < oo and p =
E[X]. For each n let X,, = %2?21 X;. Then X,, — p almost surely as
n — oo. That is, for every € > 0,

P(lim | X, —p| <€) =1.
n— oo
For Etemadi’s proof, see Durrett [80].

Central Limit Theorem

The first version of the Central Limit Theorem was proved by de Moivre in
the early 18" century for random samples of Bernoulli variables. The general
proof was given independently by Lindeberg and Lévy in the early 1920’s.

Theorem 2.1 (The Central Limit Theorem). If Xi,..., X, is a random
sample from a distribution with mean pu and finite variance o > 0, then the
limiting distribution of

X —p

=

is the standard normal distribution.

See Durrett [80] for the proofs.

2.6 Statistics

Unless otherwise stated, X1, ..., X, is a random sample from a distribution
with cdf Fx (z) = P(X < z), pdf or pmf fx (), mean E[X] = pux and variance
0% . The subscript X on F, f, u, and o is omitted when it is clear in context.
Lowercase letters x1, ..., z, denote an observed random sample.

A statistic is a function T,, = T'(X1,...,X,,) of a sample. Some examples
of statistics are the sample mean, sample variance, etc. The sample mean is
X =L5"  X;, and sample variance is

T n

_ noX2 X
52 _ 1 Z(XZ . X)2 — Zz:l i n )

n_li:1 n—1

The sample standard deviation is S = v/ S2.
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The empirical distribution function

An estimate of F(z) = P(X < z) is the proportion of sample points that
fall in the interval (—oo,x]. This estimate is called the empirical cumulative
distribution function (ecdf) or empirical distribution function (edf). The ecdf

of an observed sample z1, ..., is defined by
07 T < Z(1),
F,(x) = %, T Sx <41y, t=1,...,n—1,

17 x(n) < xZ,

where z(1) < () < -+ < ¥y is the ordered sample.

A quantile of a distribution is found by inverting the cdf. The cdf may not
be strictly increasing, however, so the definition is as follows. The ¢ quantile
of a random variable X with cdf F(z) is

X, =inf{z: F(x)> ¢}, 0<g<l.
xz

Quantiles can be estimated by the inverse ecdf of a random sample or other
function of the order statistics. Methods for computing sample quantiles differ
among statistical packages R, SAS, Minitab, SPSS, etc. (see Hyndman and
Fan [152] and the quantile help topic in R).

R Note 2.1

The default method of estimation used in the R quantile function
assigns cumulative probability (k—1)/(n—1) to the k** order statistic.
Thus, the empirical cumulative probabilities are defined

1 2 n—2

9

1.

)

n—1"n-1"""""T"n-1

Note that this set of probabilities differs from the usual assignment
{k/n}7_, of the ecdf.

Bias and Mean Squared Error

A statistic 0, is an unbiased estimator of a parameter 6 if E[0,] = 6. An
estimator 6, is asymptotically unbiased for 0 if
lim E[0,] = 6.
n—oo
The bias of an estimator  for a parameter 0 is defined bias(d) = E[f] — 6.
Clearly X is an unbiased estimator of the mean u = E[X]. It can be
shown that E[S?] = 02 = Var(X), so the sample variance S? is an unbiased
estimator of o2. The maximum likelihood estimator of variance is
1 n
2

o= Z(Xi - X)?,
i=1
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which is a biased estimator of o2. However, the bias —o?/n tends to zero as
n — 00, so &2 is asymptotically unbiased for 2.
The mean squared error (MSE) of an estimator ¢ for parameter 6 is

MSE(0) = E[(0 — 6)?].

Notice that for an unbiased estimator the MSE is the equal to the variance
of the estimator. If # is biased for #, however, the MSE is larger than the
variance. In fact, the MSE can be split into two parts,

MSE(f) = E[6? — 200 + 6] = E[0*] — 20E[f)] + 6*
= E[0%) — (E[0])? + (E[6))* — 20E[0] + 62
= Var(d) + (E[4] - 0)?,
so the MSE is the sum of variance and squared bias:
MSE(0) = Var(0) + [bias(0)]2.
The standard error of an estimator 0 is the square root of the variance:

se(0) = \/Var(d). An important example is the standard error of the mean

A sample proportion p is an unbiased estimator of the population proportion p.
The standard error of a sample proportion is 1/p(1 — p)/n. Note that se(p) <
0.5/y/n.

For each fixed x € R, the ecdf F,(x) is an unblased estimator of the cdf

F(z). The standard error of F,(z) is \/F (z))/n <0.5/y/n.
The variance of the ¢ 5ample quantlle [68 2 7]
q(1—q)
Var —_ 2.14
(Zq) = @) (2.14)

where f is the density of the sampled distribution. When quantiles are esti-
mated, the density f is usually unknown, but (2.14) shows that larger samples
are needed for estimates of quantiles in the part of the support set where the
density is close to zero.

Method of Moments

The r'* sample moment m,. = 13" X7 r = 1,2,... is an unbiased
estimator of the 7** population moment E[X"], provided that the r* moment
exists. If X has density f(x;01,...,0), then the method of moments estimator
of = (0y,...,0;) is given by the simultancous solution § = (fs,...,0;) of
the equations

‘ 1
EX")=m(21,...,20) = EZQE;’ r=1,... .k
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The Likelihood Function

Suppose that the sample observations are iid from a distribution with
density function f(X|6), where 6 is a parameter. The likelihood function is
the conditional probability of observing the sample, given 6, which is given by

L(6) = [ [ f(wil0). (2.15)
=1

The parameter 6 could be a vector of parameters, § = (61,...,6,). The like-
lihood function regards the data as a function of the parameter(s) 6. As L(6)
is a product, it is usually easier to work with the logarithm of L(6), called the
log likelihood function,

1(0) = log(L Z log f(x:]0). (2.16)

Maximum Likelihood Estimation

The method of maximum likelihood was introduced by R. A. Fisher. By
maximizing the likelihood function L(6) with respect to 6, we are looking for
the most likely value of 8 given the information available, namely the sample
data. Suppose that © is the parameter space of possible values of . If the
maximum of L(#) exists and it occurs at a unique point 0 € O, then 0 is called
the maximum likelihood estimator (MLE) of L(#). If the maximum exists but
is not unique, then any of the points where the maximum is attained is an MLE
of f. For many problems, the MLE can be determined analytically. However,
it is often the case that the optimization cannot be solved analytically, and in
that case numerical optimization or other computational approaches can be
applied.

Maximum likelihood estimators have an invariance property. This property
states that if 6 is an MLE of 6 and 7 is a function of 6, then 7() is an MLE
of 7(0).

Note that the maximum likelihood principle can also be applied in prob-
lems where the observed variables are not independent or identically dis-
tributed (the likelihood function (2.15) given above is for the iid case).

Example 2.5 (Maximum likelihood estimation of two parameters). Find the
maximum likelihood estimator of § = (A, n) for the two-parameter exponential
distribution (see Example 2.3). Suppose that z1,...,, is a random sample
from the Exp(A,n) distribution. The likelihood function is

L(0) = L(\n) = [[Ae 2T (w; > m),

where I(-) is the indicator variable (I(A) = 1 on set A and I(A) = 0 on the
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complement of A). Then if z(;) = min{xy,...,z,}, we have

L(0) = LA, n) = N"exp{-AY (zi —m)}, ) =0,
i=1
and the log-likelihood is given by
1(0) =1\ m) = nlogA =AY (z; —n), ) 2.

=1

Then [(f) is an increasing function of 7 for every fixed A, and n < (1), so
i) = 2(1). To find the maximum of /(¢) with respect to A, solve

ol(\,n)
O\

1

n

>3

%

to find the critical point A = 1/(Z — n). The MLE of 6 = (), n) is

R 1
A7) = .
(A7) (i_xmvwm>

<

Example 2.6 (Invariance property of MLE). Find the maximum likelihood
estimator of the a-quantile of the Exp(A,n) distribution in Examples 2.3 and
2.5. From Example 2.3 we have

F(z) =1—e @), x> .
Therefore F(x,) = « implies that
1
Lo = _710g(1 - Oé) +n,
A
and by the invariance property of maximum likelihood, the MLE of z, is

To = —(Z —21)) log(l — @) + ().

S
2.7 Bayes’ Theorem and Bayesian Statistics
The Law of Total Probability

If events Ay, ..., Ay partition a sample space S into mutually exclusive and

exhaustive nonempty events, then the Law of Total Probability states that the
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total probability of an event B is given by

P(B) = P(A1B) + P(A2B) + - -+ + P(AxB)
= P(B|A1)P(A1) + P(B|Ag)P(Ag) + -+ - + P(B|Ag) P(Ag)

P(B|A;)P(A;).

[
™=

1

<.
Il

For continuous random variables X and Y we have the distributional form
of the Law of Total Probability

fr(y) = /°° fyix=2)fx(x)dx.

— 00

For discrete random variables X and Y we can write the distributional form
of the Law of Total Probability as

fr(y) =P =y) =) P(Y =y|X =2)P(X =x).

Bayes’ Theorem

Bayes’ Theorem provides a method for inverting conditional probabilities.
In its simplest form, if A and B are events and P(B) > 0, then

P(Bl|A)P(A)

PUAIB) = =5 5

Often the Law of Total Probability is applied to compute P(B) in the de-
nominator. These formulas follow from the definitions of conditional and joint
probability.

For continuous random variables the distributional form of Bayes’ Theorem

Pty (@) = D= WIX@)  Srixe@)fx ()
e Iy (y) J25 yix=2(y) fx (2)dx

For discrete random variables

is

_ PY =yl X =2)P(X =x)
2APY =ylX =2)P(X =)}

fxiy=y(@) = P(X =z|Y =y)
These formulas follow from the definitions of conditional and joint probability.

Bayesian Statistics

In the frequentist approach to statistics, the parameters of a distribution
are considered to be fixed but unknown constants. The Bayesian approach
views the unknown parameters of a distribution as random variables. Thus,
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in Bayesian analysis, probabilities can be computed for parameters as well as
the sample statistics.

Bayes’ Theorem allows one to revise his/her prior belief about an unknown
parameter based on observed data. The prior belief reflects the relative weights
that one assigns to the possible values for the parameters. Suppose that X has
the density f(z|#). The conditional density of 6 given the sample observations
T1,...,T, is called the posterior density, defined by

o fl@n,ma]0) fo(0)
Joia(9) = [ flx1,.. ., 2a]0)fo(0)do’

where fy(0) is the pdf of the prior distribution of 8. The posterior distribution
summarizes our modified beliefs about the unknown parameters, taking into
account the data that has been observed. Then one is interested in comput-
ing posterior quantities such as posterior means, posterior modes, posterior
standard deviations, etc.

Note that any constant in the likelihood function cancels out of the pos-
terior density. The basic relation is

posterior x prior X likelihood,

which describes the shape of the posterior density up to a multiplicative con-
stant. Often the evaluation of the constant is difficult and the integral cannot
be obtained in closed form. However, Monte Carlo methods are available that
do not require the evaluation of the constant in order to sample from the
posterior distribution and estimate posterior quantities of interest. See, e.g.,
[49, 107, 110, 125, 240] on development of Markov Chain Monte Carlo sam-
pling.

Readers are referred to Lee [179] for an introductory presentation of
Bayesian statistics. Albert [5] is a good introduction to computational
Bayesian methods with R. A textbook covering probability and mathemati-
cal statistics from both a classical and Bayesian perspective at an advanced
undergraduate level is DeGroot and Schervish [69)].

2.8 Markov Chains

In this section we briefly review discrete time, discrete state space Markov
chains. A basic understanding of Markov chains is necessary background for
Chapter 11 on Markov Chain Monte Carlo methods. Readers are referred to
Ross [251] for an excellent introduction to Markov chains.

A Markov chain is a stochastic process {X;} indexed by time ¢ > 0. Our
goal is to generate a chain by simulation, so we consider discrete time Markov
chains. The time index will be the nonnegative integers, so that the process
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starts in state Xy and makes successive transitions to X1, X, ..., X¢,.... The
set of possible values of X; is the state space.

Suppose that the state space of a Markov chain is finite or countable.
Without loss of generality, we can suppose that the states are 0,1,2,.... The
sequence {X;|t > 0} is a Markov chain if

PXi=jlXo=t90, X1 =101,...,. X1 =041, Xy =1) =
P(Xiy1 = jl1 Xy = 1),

for all pairs of states (4,5), t > 0. In other words, the transition probability
depends only on the current state, and not on the past.

If the state space is finite, the transition probabilities P(X;41|X;) can
be represented by a transition matrix P = (p;;) where the entry p;; is the
probability that the chain makes a transition to state j in one step starting
from state 7. The probability that the chain moves from state 7 to state j in k

steps is p(k)

i; » and the Chapman-Kolmogorov equations (see e.g. [251, Ch. 4])
provide that the k-step transition probabilities are the entries of the matrix
P*. That is, P*) = (pff)) = P*, the k** power of the transition matrix.

A Markov chain is irreducible if all states communicate with all other
states: given that the chain is in state ¢, there is a positive probability that
the chain can enter state j in finite time, for all pairs of states (i, 7). A state
1 is recurrent if the chain returns to i with probability 1; otherwise state 7 is
transient. If the expected time until the chain returns to 4 is finite, then 7 is
nonnull or positive recurrent. The period of a state 7 is the greatest common
divisor of the lengths of paths starting and ending at . In an irreducible chain,
the periods of all states are equal, and the chain is aperiodic if the states all
have period 1. Positive recurrent, aperiodic states are ergodic. In a finite-state
Markov chain all recurrent states are positive recurrent.

In an irreducible, ergodic Markov chain the transition probabilities con-
verge to a stationary distribution 7 on the state space, independent of the
initial state of the chain.

In a finite-state Markov chain, irreducibility and aperiodicity imply that
for all states j

m; = lim pgy)
n—oo
exists and is independent of the initial state i. The probability distribution
7 = {m;} is called the stationary distribution, and 7 is the unique nonnegative
solution to the system of equations

mp=Y mpig, =0 > mi=1 (2.17)
i=0 j=0

We can interpret 7; as the (limiting) proportion of time that the chain is in
state j.
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Example 2.7 (Finite state Markov chain). Ross [251] gives the following
example of a Markov chain model for mutations of DNA. A DNA nucleotide
has four possible values. For each unit of time, the model specifies that the
nucleotide changes with probability 3a, for some 0 < o < 1/3. If it does
change, then it is equally likely to change to any of the other three values.
Thus p;; =1 — 3a and p;; = 3¢/3 = @, # j. If we number the states 1 to 4,
the transition matrix is

1 -3« « « o
« 1—-3a « «
P= e Q 1-3a Q (2.18)
«@ « « 1 -3«
where p;; = P;; is the probability of a mutation from state i to state j.

The i*" row of a transition matrix is the conditional probability distribution
P(Xp41 = j|Xn = 1), 7 = 1,2,3,4 of a transition to state j given that the
process is currently in state ¢. Thus each row must sum to 1 (the matrix is row
stochastic). This matrix happens to be doubly stochastic because the columns
also sum to 1, but in general a transition matrix need only be row stochastic.

Suppose that o = 0.1. Then the two-step and the 16-step transition ma-
trices are

0.52 0.16 0.16 0.16 0.2626 0.2458 0.2458 0.2458
P2 — 0.16 0.52 0.16 0.16 pl6 = 0.2458 0.2626 0.2458 0.2458
0.16 0.16 0.52 0.16]|° 0.2458 0.2458 0.2626 0.2458
0.16 0.16 0.16 0.52 0.2458 0.2458 0.2458 0.2626

The three-step transition matrix is P?°P = P3, etc. The probability pﬁ) of
transition from state 1 to state 4 in two steps is P%A = 0.16, and the probability

that the process returns to state 2 from state 2 in 16 steps is pélzﬁ) = IE’%’G2 =

0.2626.

All entries of P are positive, hence all states communicate; the chain is ir-
reducible and ergodic. The transition probabilities in every row are converging
to the same stationary distribution 7 on the four states. The stationary dis-
tribution is the solution of equations (2.17); in this case 7 (i) = i,i =1,2,3,4.
(In this example, it can be shown that the limiting probabilities do not depend

1

ono: P =1+ 3(1—4a)" — § as n — 00.) o

Example 2.8 (Random walk). An example of a discrete-time Markov chain
with an infinite state space is the random walk. The state space is the set of
all integers, and the transition probabilities are

Dii+1 =D, 1=0,+1,£2,...,
Dii-1 =1 —p, i=0,4+1,42,...,
pij =0, jg{i—1,i+1}.
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In the random walk model, at each transition a step of unit length is taken
at random to the right with probability p or left with probability 1 — p. The
state of the process at time n is the current location of the walker at time n.
Another interpretation considers the gambler who bets $1 on a sequence of
Bernoulli(p) trials and wins or loses $1 at each transition; if Xy = 0, the state
of the process at time n is his gain or loss after n trials.

In the random walk model all states communicate, so the chain is irre-
ducible. All states have period 2. For example, it is impossible to return to
state 0 starting from 0 in an odd number of steps. The probability that the
first return to 0 from state 0 occurs in exactly 2n steps is

o = ()= = G 60 -y

It can be shown that Z;’ozlpé%") < oo if and only if p # 1/2. Thus, the

expected number of visits to 0 is finite if and only if p # 1/2. Recurrence
and transience are class properties, hence the chain is recurrent if and only if
p = 1/2 and otherwise all states are transient. When p = 1/2 the process is
called a symmetric random walk. The symmetric random walk is discussed in
Example 4.5. o



Chapter 3

Methods for Generating Random
Variables

3.1 Introduction

One of the fundamental tools required in computational statistics is the
ability to simulate random variables from specified probability distributions.
On this topic many excellent references are available. On the general subject
of methods for generating random variates from specified probability distri-
butions, readers are referred to [72, 97, 117, 119, 120, 160, 234, 240, 251, 255].
On specific topics, also see [3, 4, 33, 43, 71, 101, 161, 165, 195].

In the simplest case, to simulate drawing an observation at random from
a finite population, a method of generating random observations from the
discrete uniform distribution is required. Therefore, a suitable generator of
uniform pseudo-random numbers is essential. Methods for generating random
variates from other probability distributions all depend on the uniform random
number generator.

In this text we assume that a suitable uniform pseudo-random number
generator is available. Refer to the help topic for .Random.seed or RNGkind
for details about the default random number generator in R. For reference
about different types of random number generators and their properties see
Gentle [117, 119] and Knuth [169].

The uniform pseudo-random number generator in R is runif. To generate
a vector of n (pseudo) random numbers between 0 and 1, use runif (n).
Throughout this text, whenever computer generated random numbers are
mentioned, it is understood that these are pseudo-random numbers. To gener-
ate n random Uniform(a, b) numbers, use runif (n, a, b). To generate an n
by m matrix of random numbers between 0 and 1, use matrix(runif (n*m),
nrow=n, ncol=m) or matrix(runif (n*m), n, m).

In the examples of this chapter, several functions are given for generating
random variates from continuous and discrete probability distributions. Gen-
erators for many of these distributions are available in R (e.g., rbeta, rgeom,
rchisg, etc.), but the methods presented below are general and apply to many
other types of distributions. These methods are also applicable for external
libraries, stand-alone programs, or nonstandard simulation problems.

Most of the examples include a comparison of the generated sample with
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the theoretical distribution of the sampled population. In some examples,
histograms, density curves, or QQ plots are constructed. In other examples
summary statistics such as sample moments, sample percentiles, or the em-
pirical distribution are compared with the corresponding theoretical values.
These are informal approaches to check the implementation of an algorithm
for simulating a random variable.

Example 3.1 (Sampling from a finite population). The sample function can
be used to sample from a finite population, with or without replacement.

> #toss some coins
> sample(0:1, size = 10, replace = TRUE)
[1J]0111011110

> #choose some lottery numbers
> sample(1:100, size = 6, replace = FALSE)
[1] 51 89 26 99 74 73

> #permuation of letters a-z
> sample(letters)
[1] lldll Ilnll llkll lell llsll llp" lljll lltll Ilell l|bll Ilgll

ngn o npn nyn HiNomgn owpn npn nean uqu non

[22] "y "R ten nfn ongn

> #sample from a multinomial distribution

> x <- sample(1:3, size = 100, replace = TRUE,
prob = c(.2, .3, .5))

> table(x)

Random Generators of Common Probability Distributions in R

In the sections that follow, various methods of generating random variates
from specified probability distributions are presented. Before discussing those
methods, however, it is useful to summarize some of the probability functions
available in R. The probability mass function (pmf) or density (pdf), cumu-
lative distribution function (cdf), quantile function, and random generator
of many commonly used probability distributions are available. For example,
four functions are documented in the help topic Binomial:

dbinom(x, size, prob, log = FALSE)

pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
gbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

The same pattern is applied to other probability distributions. In each case,
the abbreviation for the name of the distribution is combined with first letter
d for density or pmf, p for cdf, q for quantile, or r for random generation from
the distribution.
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A partial list of available probability distributions and parameters is given
in Table 3.1. For a complete list, refer to the R documentation [294, Ch. §].
In addition to the parameters listed, some of the functions take optional log,
lower.tail, or log.p arguments, and some take an optional ncp (noncen-
trality) parameter.

TABLE 3.1: Selected Univariate Probability Functions
Available in R

Distribution cdf Generator Parameters
beta pbeta rbeta shapel, shape2
binomial pbinom  rbinom size, prob
chi-squared pchisq rchisq df

exponential pexp rexp rate

F pf rf df1, df2
gamma pgamma rgamma shape, rate or scale
geometric pgeom rgeom prob
lognormal plnorm  rlnorm meanlog, sdlog
negative binomial pnbinom rnbinom size, prob
normal pnorm rnorm mean, sd
Poisson ppois rpois lambda
Student’s t pt rt df

uniform punif runif min, max

3.2 The Inverse Transform Method

The inverse transform method of generating random variables is based on
the following well-known result (see [21, p. 201] or [244, p. 203]).

Theorem 3.1 (Probability Integral Transformation). If X is a continuous
random variable with cdf Fx (z), then U = Fx(X) ~ Uniform(0, 1).

The inverse transform method of generating random variables applies the
probability integral transformation. Define the inverse transformation

Fyt(u) = inf{z: Fx(z)=u}, 0<u<l
If U ~ Uniform(0, 1), then for all z € R

P(Fx'(U) <z) = P(inf{t: Fx(t)=U} <z)
= P(U < Fx(x))
= Fy(Fx(z)) = Fx (),
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and therefore F'(U) has the same distribution as X. Thus, to generate a
random observation X, first generate a Uniform(0,1) variate u and deliver the
inverse value Iy 1(u) The method is easy to apply, provided that F'y Lis easy
to compute. The method can be applied for generating continuous or discrete
random variables. The method can be summarized as follows.

1. Derive the inverse function Fy ' (u).
2. Write a command or function to compute Fi ' (u).
3. For each random variate required:

(a) Generate a random u from Uniform(0,1).
(b) Deliver x = F'(u).

3.2.1 Inverse Transform Method, Continuous Case

Example 3.2 (Inverse transform method, continuous case). This example
uses the inverse transform method to simulate a random sample from the
distribution with density fx(z) =322, 0 <z < 1.

Here Fx(z) = 2% for 0 < 2 < 1, and Fyx'(u) = u!'/3. Generate all n
required random uniform numbers as vector u. Then u~(1/3) is a vector of

length n containing the sample z1, ..., z,.
n <- 1000
u <- runif(n)
x <= u™(1/3)

hist(x, prob = TRUE) #density histogram of sample
y <- seq(0, 1, .01)
lines(y, 3%y~2) #density curve f(x)

The histogram and density plot in Figure 3.1 suggests that the empirical and
theoretical distributions approximately agree. o

R Note 3.1

In Figure 3.1, the title includes a math expression. This title is obtained
by specifying the main title using the expression function as follows:

hist(x, prob = TRUE, main = expression(f(x)==3*x"2))

Alternately, main = bquote (f (x)==3*x"2)) produces the same title.
Math annotation is covered in the help topic for plotmath. Also see
the help topics for text and axis.

Example 3.3 (Exponential distribution). This example applies the inverse
transform method to generate a random sample from the exponential distri-
bution with mean 1/\.
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f(x) = 3x°

=

/

2.0
1

Density

1.0

0.5
1

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 3.1: Probability density histogram of a random sample generated
by the inverse transform method in Example 3.2, with the theoretical density
f(x) = 322 superimposed.

If X ~ Exp(A), then for z > 0 the cdf of X is Fx(x) = 1 — e~ **. The
inverse transformation is Fy'(u) = —+log(1 — u). Note that U and 1 — U
have the same distribution and it is simpler to set # = —+ log(u). To generate
a random sample of size n with parameter lambda:

-log(runif(n)) / lambda

A generator rexp is available in R. However, this algorithm is very useful for
implementation in other situations, such as a C program. o

3.2.2 Inverse Transform Method, Discrete Case

The inverse transform method can also be applied to discrete distributions.
If X is a discrete random variable and

< T < < Ty <.
are the points of discontinuity of Fx(x), then the inverse transformation is
Fgl(u) = x;, where Fx(x;-1) <u < Fx(z;).

For each random variate required:

1. Generate a random v from Uniform(0,1).

2. Deliver x; where F(z;-1) < u < F(x;).
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The solution of F(x;—1) < uw < F(z;) in Step (2) may be difficult for
some distributions. See Devroye [72, Ch. III] for several different methods of
implementing the inverse transform method in the discrete case.

Example 3.4 (Two point distribution). This example applies the inverse
transform to generate a random sample of Bernoulli(p = 0.4) variates. Al-
though there are simpler methods to generate a two point distribution in R,
this example illustrates computing the inverse cdf of a discrete random vari-
able in the simplest case.

In this example, Fx (0) = fx(0) = 1—pand Fx(1) = 1. Thus, F'(u) = 1
if u > 0.6 and Fy'(u) = 0 if u < 0.6. The generator should therefore deliver
the numerical value of the logical expression u > 0.6.

n <- 1000

p <- 0.4

u <- runif(n)

x <- as.integer(u > 0.6) #(u > 0.6) is a logical vector
> mean(x)

[1] 0.41

> var(x)

[1] 0.2421421

Compare the sample statistics with the theoretical moments. The sample mean
of a generated sample should be approximately p = 0.4 and the sample vari-
ance should be approximately p(1 — p) = 0.24. Our sample statistics are
7 =0.41 (se = 1/0.24/1000 = 0.0155) and s* = 0.242. S

R Note 3.2

In R one can use the rbinom (random binomial) function with size=1
to generate a Bernoulli sample. Another method is to sample from the
vector (0,1) with probabilities (1 — p, p).

rbinom(n, size = 1, prob = p)
sample(c(0,1), size = n, replace = TRUE, prob = c(.6,.4))

Also see Example 3.1.

Example 3.5 (Geometric distribution). Use the inverse transform method
to generate a random geometric sample with parameter p = 1/4.

The pmf is f(z) = p¢®, * = 0,1,2,..., where ¢ = 1 — p. At the points
of discontinuity z = 0,1,2,..., the cdf is F(x) = 1 — ¢°*!. For each sample
element we need to generate a random uniform « and solve

1—¢" <u<1—g¢g"t.

This inequality simplifies to z < log(1 — u)/log(q) < 2 + 1. The solution
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is x4+ 1 = [log(1 — u)/log(q)], where [t] denotes the ceiling function (the
smallest integer not less than t).

n <- 1000

p <- 0.25

u <- runif(n)

k <- ceiling(log(1-u) / log(i-p)) - 1

Here again there is a simplification, because U and 1 — U have the same
distribution. Also, the probability that log(1—u)/log(1 —p) equals an integer
is zero. The last step can therefore be simplified to

k <- floor(log(u) / log(1l-p))

&

The geometric distribution was particularly easy to simulate by the inverse
transform method because it was easy to solve the inequality

Flz—1)<u< F(z)

rather than compare each u to all the possible values F'(z). The same method
applied to the Poisson distribution is more complicated because we do not
have an explicit formula for the value of  such that F(z — 1) < u < F(z).

The R function rpois generates random Poisson samples. The basic
method to generate a Poisson(\) variate (see e.g. [250]) is to generate and
store the cdf via the recursive formula

Af(x)

fa+1) =S5

F(x+1)=F(z)+ f(z +1).

For each Poisson variate required, a random uniform w is generated, and the
cdf vector is searched for the solution to F(z — 1) < u < F(z).

To illustrate the main idea of the inverse transform method for generating
Poisson variates, here is a similar example for which there is no R generator
available: the logarithmic distribution. The logarithmic distribution is a one-
parameter discrete distribution supported on the positive integers.

Example 3.6 (Logarithmic distribution). This example implements a func-
tion to simulate a Logarithmic(f) random sample by the inverse transform
method. A random variable X has the logarithmic distribution (see [164], Ch.
7) if

a 6®

flz)=P(X =2) = pt r=1,2,... (3.1)

where 0 < § < 1 and a = (—log(1 — 6))~!. A recursive formula for f(x) is

GCE

x+1f(x), x=1,2,.... (3.2)

fle+1) =

Theoretically, the pmf can be evaluated recursively using (3.2), but the
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calculation is not sufficiently accurate for large values of z and ultimately
produces f(z) = 0 with F(z) < 1. Instead we compute the pmf from (3.1) as
exp(loga 4+ zlogd — log ). In generating a large sample, there will be many
repetitive calculations of the same values F(z). It is more efficient to store the
cdf values. Initially choose a length N for the cdf vector, and compute F(x),
x=1,2,...,N. If necessary, N will be increased.

To solve F(x — 1) < u < F(z) for a particular u, it is necessary to count
the number of values x such that F(x — 1) < w. If F' is a vector and u; is a
scalar, then the expression F' < u; produces a logical vector; that is, a vector
the same length as F' containing logical values TRUE or FALSE. In an arithmetic
expression, TRUE has value 1 and FALSE has value 0. Notice that the sum of
the logical vector (u; > F) is exactly  — 1.

rlogarithmic <- function(n, theta) {
#returns a random logarithmic(theta) sample size n
u <- runif(n)
#set the initial length of cdf vector
N <- ceiling(-16 / loglO(theta))
k <= 1:N
a <- -1/log(1-theta)
fk <- exp(log(a) + k * log(theta) - log(k))
Fk <- cumsum(fk)
x <- integer(n)
for (i in 1:n) {
x[i] <- as.integer(sum(uli] > Fk)) #F {-1}(w)-1
while (x[i] ==N) {
#if x==N we need to extend the cdf
#very unlikely because N is large
logf <- log(a) + (N+1)*log(theta) - log(N+1)
fk <- c(fk, exp(logf))
Fk <- c(Fk, Fk[N] + fk[N+1]1)
N<-N+1
x[i] <- as.integer(sum(ul[i] > Fk))

Generate random samples from a Logarithmic(0.5) distribution.

n <- 1000

theta <- 0.5

x <- rlogarithmic(n, theta)

#compute density of logarithmic(theta) for comparison
k <- sort(unique(x))

p <- -1 / log(1l - theta) * theta’k / k

se <- sqrt(p*(1-p)/n)  #standard error

In the following results, the relative frequencies of the sample (first line) match
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the theoretical distribution (second line) of the Logarithmic(0.5) distribution
within two standard errors.

> round(rbind(table(x)/n, p, se),3)
1 2 3 4 5 6 7
0.741 0.169 0.049 0.026 0.008 0.003 0.004
p 0.721 0.180 0.060 0.023 0.009 0.004 0.002
se 0.014 0.012 0.008 0.005 0.003 0.002 0.001

<

Remark 3.1. A more efficient generator for the Logarithmic(f) distribution is
implemented in Example 3.9 of Section 3.4.

3.3 The Acceptance-Rejection Method

Suppose that X and Y are random variables with density or pmf f and g,
respectively, and there exists a constant ¢ such that

0,
g(t) =

for all t such that f(¢) > 0. Then the acceptance-rejection method (or rejection
method) can be applied to generate the random variable X.

The Acceptance-Rejection Method

1. Find a random variable Y with density ¢ satisfying f(t)/g(t) < ¢, for
all ¢ such that f(¢) > 0. Provide a method to generate random Y.

2. For each random variate required:

(a) Generate a random y from the distribution with density g.

(b) Generate a random w from the Uniform(0, 1) distribution.

(¢) Ifu < f(y)/(cg(y)), accept y and deliver x = y; otherwise reject y
and repeat from Step 2a.

Note that in Step 2c,
Y Y
P(accept]Y) = P(U < CJ:;((Y)) |YV) = c];((Y))

The last equality is simply evaluating the cdf of U. The total probability of
acceptance for any iteration is therefore

ZP (accept|y) P Z f(y) =

; cg(y)’

Q\H
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and the number of iterations until acceptance has the geometric distribution
with mean c. Hence, on average each sample value of X requires c iterations.
For efficiency, Y should be easy to simulate and ¢ small.
To see that the accepted sample has the same distribution as X, apply
Bayes’ Theorem. In the discrete case, for each k such that f(k) > 0,
P(accepted |k)g(k) _ [f(k)/(cg(k))] g(k)

P(k |accepted) = Placcepted) = e = f(k).

The continuous case is similar.

Example 3.7 (Acceptance-rejection method). This example illustrates the
acceptance-rejection method for the beta distribution. On average, how many
random numbers must be simulated to generate 1000 variates from the
Beta(a = 2, § = 2) distribution by this method? It depends on the upper
bound ¢ of f(z)/g(x), which depends on the choice of the function g(z).

The Beta(2,2) density is f(z) = 62(1 —z), 0 < < 1. Let g(x) be the
Uniform(0,1) density. Then f(x)/g(z) < 6 for all 0 < < 1,80 ¢ = 6. A
random z from g(z) is accepted if

f(x)  62(1 —x)

= =z(l—2x)>u.
cg(x) 6(1)
On average, cn = 6000 iterations (12000 random numbers) will be required
for a sample size 1000. In the following simulation, the counter j for iterations
is not necessary, but included to record how many iterations were actually
needed to generate the 1000 beta variates.

n <- 1000
k<=0 #counter for accepted
j <=0 #iterations

y <- numeric(n)

while (k < n) {
u <- runif(1)
j<-j+1
x <- runif(1) #random variate from g
if (x x (1-x) > u) {
#we accept x

k<-k +1
ylk] <- x
}
¥
>3]
[1] 5873

In this simulation, 5873 iterations (11746 random numbers) were required
to generate the 1000 beta variates. Compare the empirical and theoretical
percentiles.
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#compare empirical and theoretical percentiles

p < seq(.1, .9, .1)

Qhat <- quantile(y, p) #quantiles of sample

Q <- gbeta(p, 2, 2) #theoretical quantiles

se <- sqrt(p * (1-p) / (n * dbeta(Q, 2, 2)72)) #see Ch. 2

The sample percentiles (first line) approximately match the Beta(2,2) per-
centiles computed by gbeta (second line), most closely near the center of
the distribution. Larger numbers of replicates are required for estimation of
percentiles where the density is close to zero.

> round(rbind(Qhat, Q, se), 3)

10% 20% 30% 40Y% 50% 60% 70% 80% 90%
Qhat 0.189 0.293 0.365 0.449 0.519 0.589 0.665 0.741 0.830
Q 0.196 0.287 0.363 0.433 0.500 0.567 0.637 0.713 0.804
se 0.010 0.010 0.010 0.011 0.011 0.011 0.010 0.010 0.010

Repeating the simulation with n = 10000 produces more precise estimates.

> round(rbind(Qhat, Q, se), 3)

10% 20% 30% 40% 50% 60% 70% 80% 90%
Qhat 0.194 0.292 0.368 0.436 0.504 0.572 0.643 0.716 0.804
Q 0.196 0.287 0.363 0.433 0.500 0.567 0.637 0.713 0.804
se 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003

<

Remark 3.2. See Example 3.8 for a more efficient beta generator based on the
ratio of gammas method.

3.4 Transformation Methods

Many types of transformations other than the probability inverse trans-
formation can be applied to simulate random variables. Some examples are

1. If Z ~ N(0,1), then V = Z2 ~ y2(1).

2. If U ~ x?(m) and V ~ x?(n) are independent, then F' = % has the

F distribution with (m,n) degrees of freedom.

3. If Z ~N(0,1) and V ~ x?(n) are independent, then T' = \/% has the

Student ¢ distribution with n degrees of freedom.

4. If U,V ~ Unif(0,1) are independent, then

Z1 =+/—2logU cos(27V),
Zy = +/—2logU sin(27V)
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are independent standard normal variables [255, p. 86].

5. If U ~ Gamma(r, ) and V ~ Gammay(s, ) are independent, then X =
% has the Beta(r, s) distribution.

6. If U,V ~ Unif(0,1) are independent, then

log(V) J
log(1 - (1-6)Y)

x =i+

has the Logarithmic(#) distribution, where |z| denotes the integer part
of z.

Generators based on transformations (5) and (6) are implemented in Ex-
amples 3.8 and 3.9. Sums and mixtures are special types of transformations
that are discussed in Section 3.5. Example 3.21 uses a multivariate transfor-
mation to generate points uniformly distributed on the unit sphere.

Example 3.8 (Beta distribution). The following relation between beta and
gamma distributions provides another beta generator.
If U ~ Gamma(r, ) and V ~ Gamma(s, \) are independent, then

U
S U+V

has the Beta(r, s) distribution [255, p.64]. This transformation determines an
algorithm for generating random Beta(a, b) variates.

1. Generate a random v from Gamma(a,1).

2. Generate a random v from Gamma(b, 1).

u
utv’

3. Deliver x =

This method is applied below to generate a random Beta(3, 2) sample.

n <- 1000

a <-3

b <-2

u <- rgamma(n, shape=a, rate=1)
v <- rgamma(n, shape=b, rate=1)
x<-u/ (u+wv)

The sample data can be compared with the Beta(3, 2) distribution using a
quantile-quantile (QQ) plot. If the sampled distribution is Beta(3, 2), the QQ
plot should be nearly linear.

q <- gbeta(ppoints(n), a, b)
qgplot(q, x, cex=0.25, xlab="Beta(3, 2)", ylab="Sample")
abline(0, 1)
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FIGURE 3.2: QQ Plot comparing the Beta(3, 2) distribution with a simu-
lated random sample generated by the ratio of gammas method in Example
3.8.

The line x = ¢ is added for reference. The QQ plot of the ordered sample vs.
the Beta(3, 2) quantiles in Figure 3.2 is very nearly linear, as it should be if
the generated sample is in fact a Beta(3, 2) sample. o

Example 3.9 (Logarithmic distribution, version 2). This example provides
another, more efficient generator for the logarithmic distribution (see Example
3.6). If U,V are independent Uniform(0,1) random variables, then

log(V) J
log(1— (1-6)7)

X = {1 + (3.3)

has the Logarithmic(6) distribution ([72, pp. 546-8], [165]). This transforma-
tion provides a simple and efficient generator for the logarithmic distribution.

1. Generate u from Unif(0,1).
2. Generate v from Unif(0,1).
3. Deliver x = |1 +log(v)/log(l — (1 —0)*)].

Below is a comparison of the Logarithmic(0.5) distribution with a sample
generated using transformation (3.3). The empirical probabilities p.hat are
within two standard errors of the theoretical probabilities p.

n <- 1000
theta <- 0.5
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<- runif(n) #generate logarithmic sample
<- runif (n)
floor(1l + log(v) / log(l - (1 - theta) u))
<- 1:max(x) #calc. logarithmic probs.
<- -1 / log(1l - theta) * theta’k / k
se <- sqrt(px(1-p)/n)
p.-hat <- tabulate(x)/n

e A 1
A
|

> print (round(rbind(p.hat, p, se), 3))

[(,11 [,21 f,31 [,41 [,581 [,6]1 [,7]
p-hat 0.740 0.171 0.052 0.018 0.010 0.006 0.003
P 0.721 0.180 0.060 0.023 0.009 0.004 0.002
se 0.014 0.012 0.008 0.005 0.003 0.002 0.001

The following function is a simple replacement for rlogarithmic in Ex-
ample 3.6.

rlogarithmic <- function(n, theta) {
stopifnot(all(theta > 0 & theta < 1))
th <- rep(theta, length=n)
u <- runif(n)
v <- runif(n)
x <= floor(1l + log(v) / log(l - (1 - th)"w))
return(x)

R Note 3.3

The tabulate function bins positive integers, so it can be used on the
logarithmic sample. For other types of data, recode the data to positive
integers or use table. If the data are not positive integers, tabulate

will truncate real numbers and ignore without warning integers less
than 1.
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R Note 3.4

In the rlogarithmic function above, notice the & operator in
stopifnot(all(theta > O & theta < 1)). Here we must use &
rather than &&. The & operator performs an elementwise AND compar-
ison, returning a logical vector. The && operator, however, evaluates
from left to right until a single logical result is obtained. For example

x <- 1:5

>1<x&x<5

[1] FALSE TRUE TRUE TRUE FALSE
>1<x && x< 5

[1] FALSE
>any( 1 <x&x<5)
[1] TRUE

> any( 1 < x & x < 5 )
[1] FALSE

> any(1 < x) && any(x < 5)
[1] TRUE

> all(l < x) && all(x < 5)
[1] FALSE

Similarly, | performs elementwise an OR comparison, and | | evaluates
from left to right.

3.5 Sums and Mixtures

Sums and mixtures of random variables are special types of transforma-
tions. In this section we focus on sums of independent random variables (con-
volutions) and several examples of discrete and continuous mixtures.

Convolutions

Let X1,..., X, be independent and identically distributed with distribu-
tion X; ~ X, and let § = X; +---+ X,,. The distribution function of the sum

S is called the n-fold convolution of X and denoted F ;—(n). It is straightforward
to simulate a convolution by directly generating X1,...,X,, and computing
the sum.

Several distributions are related by convolution. If v > 0 is an integer,
the chisquare distribution with v degrees of freedom is the convolution of
v iid squared standard normal variables. The negative binomial distribution
NegBin(r, p) is the convolution of r iid Geom(p) random variables. The con-
volution of r independent Exp(\) random variables has the Gamma(r, A) dis-
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tribution. See Bean [26] for an introductory level presentation of these and
many other interesting relationships between families of distributions.

In R it is of course easier to use the functions rchisq, rgeom and rnbinom
to generate chisquare, geometric and negative binomial random samples. The
following example is presented to illustrate a general method that can be
applied whenever distributions are related by convolutions.

Example 3.10 (Chisquare). This example generates a chisquare x?(v) ran-
dom variable as the convolution of v squared normals. If Z;,... 7, are iid
N(0,1) random variables, then V = Z2 + --- 4+ Z2 has the x?(v) distribution.
Steps to generate a random sample of size n from x?(v) are as follows:

1. Fill an n X v matrix with nv random N(0,1) variates.
2. Square each entry in the matrix (1).

3. Compute the row sums of the squared normals. Each row sum is one
random observation from the x?(v) distribution.

4. Deliver the vector of row sums.
An example with n = 1000 and v = 2 is shown below.

n <- 1000

nu <- 2

X <- matrix(rnorm(n*nu), n, nu)” 2 #matrix of sq. normals
#sum the squared normals across each row: method 1

y <- rowSums (X)

#method 2

y <- apply(X, MARGIN=1, FUN=sum) #a vector length n
> mean(y)

[1] 2.027334

> mean(y~2)

[1] 7.835872

A x?(v) random variable has mean v and variance 2v. Our sample statistics

below agree very closely with the theoretical moments E[Y] = v = 2 and

E[Y?] = 2v + v? = 8. Here the standard errors of the sample moments are

0.063 and 0.089, respectively. o
R Note 3.5

This example introduces the apply function. The apply function ap-
plies a function to the margins of an array. To sum across the rows of
matrix X, the function (FUN=sum) is applied to the rows (MARGIN=1).
Notice that a loop is not used to compute the row sums. In general
for efficient programming in R, avoid unnecessary loops. (For row and
column sums it is easier to use rowSums and colSums.)
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Mixtures

A random variable X is a discrete mixture if the distribution of X is a
weighted sum Fx(z) = > 0;Fx,(x) for some sequence of random variables
X1,Xs,... and 6; > 0 such that ), 0; = 1. The constants 6; are called the
mixing weights or mixing probabilities. Although the notation is similar for
sums and mixtures, the distributions represented are different.

A random Variable X is a continuous mixture if the distribution of X is

f_ Fx|y—y(z)fy(y) dy for a family XY = y indexed by the real
numbers y and weighting function fy such that f_oooo fy(y) dy =1.

Compare the methods for simulation of a convolution and a mixture of
normal variables. Suppose X1 ~ N(0,1) and X3 ~ N(3,1) are independent.
The notation S = X; + X5 denotes the convolution of X; and X5. The dis-
tribution of S is normal with mean p1 + p2 = 3 and variance o3 + 03 = 2. To

simulate the convolution:

1. Generate x; ~ N(0, 1).
2. Generate zo ~ N(3, 1).
3. Deliver s = x1 + x5.

We can also define a 50% normal mizture X, denoted Fx(x) = 0.5Fx, (z)+
0.5Fx, (x). Unlike the convolution above, the distribution of the mixture X is
distinctly non-normal; it is bimodal.

To simulate the mizture:

1. Generate an integer k € {1,2}, where P(1) = P(2) = 0.5.

2. If k =1 deliver random z from N(0, 1);
if k = 2 deliver random « from N(3, 1).

In the following example we will compare simulated distributions of a
convolution and a mixture of gamma random variables.

Example 3.11 (Convolutions and mixtures). Let X; ~ Gamma(2, 2) and
X9 ~ Gamma(2, 4) be independent. Compare the histograms of the samples
generated by the convolution S = X; + Xo and the mixture Fx = 0.5Fx, +
0.5Fx,.

n <- 1000
x1 <- rgamma(n, 2, 2)
x2 <- rgamma(n, 2, 4)
<- x1 + x2 #the convolution
<- runif (n)
as.integer(u > 0.5) #vector of 0’s and 1’s
<- k * x1 + (1-k) * x2 #the mixture

MR E W
N
|
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par(mfcol=c(1,2)) #two graphs per page
hist(s, prob=TRUE, x1lim=c(0,5), ylim=c(0,1))
hist(x, prob=TRUE, xlim=c(0,5), ylim=c(0,1))

par(mfcol=c(1,1)) #restore display
The histograms shown in Figure 3.3, of the convolution S and mixture X, are
clearly different. o
R Note 3.6

The par function can be used to set (or query) certain graphical pa-
rameters. A list of all graphical parameters is returned by par (). The
command par (mfcol=c(n,m)) configures the graphical device to dis-
play nm graphs per screen, in n rows and m columns.

Histogram of s Histogram of x

Density
Density

00 02 04 06 08 10
00 02 04 08 08 10

FIGURE 3.3: Histogram of a simulated convolution of Gamma(2, 2) and
Gamma(2, 4) random variables (left), and a 50% mixture of the same variables
(right), from Example 3.11.

The method of generating the mixture in this example is simple for a
mixture of two distributions, but not for arbitrary mixtures. The next example
illustrates how to generate a mixture of several distributions with arbitrary
mixing probabilities.

Example 3.12 (Mixture of several gamma distributions). This example is
similar to the previous one, but there are several components to the mixture
and the mixing weights are not uniform. The mixture is

5
Fx = ZGjFXj,

i=1
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where X; ~ Gamma(r = 3, \; = 1/j) are independent and the mixing prob-
abilities are §; = j/15, j =1,...,5.

To simulate one random variate from the mixture Fx :
1. Generate an integer k € {1,2,3,4,5}, where P(k) =0, k=1,...,5.
2. Deliver a random Gamma(r, \;) variate.

To generate a sample size n, Steps (1) and (2) are repeated n times. Notice
that the algorithm stated above suggests using a for loop, but for loops
are really inefficient in R. The algorithm can be translated into a vectorized
approach.

1. Generate a random sample k1, ..., k, of integers in a vector k, where
P(k) =0k, k=1,...,5. Then k[i] indicates which of the five gamma
distributions will be sampled to get the i*" element of the sample (use
sample).

2. Set rate equal to the length n vector A = (A).

3. Generate a gamma sample size n, with shape parameter r and rate
vector rate (use rgamma).

Then an efficient way to implement this in R is shown by the following exam-
ple.

n <- 5000

k <- sample(1:5, size=n, replace=TRUE, prob=(1:5)/15)
rate <- 1/k

x <- rgamma(n, shape=3, rate=rate)

#plot the density of the mixture
#with the densities of the components
plot(density(x), x1lim=c(0,40), ylim=c(0,.3),
1wd=3, xlab="x", main="")
for (i in 1:5)
lines(density(rgamma(n, 3, 1/i)))

The plot in Figure 3.4 shows the density of each X; and the density of the
mixture (thick line). The density curves in Figure 3.4 are actually density
estimates, which will be discussed in Chapter 12. o

Example 3.13 (Mixture of several gamma distributions). Let

5
Fx =Y 0;Fx,

j=1
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Density
0.15 0.25
l l

0.05
|

FIGURE 3.4: Density estimates from Example 3.12: A mixture (thick line)
of several gamma densities (thin lines).

where X; ~ Gamma(3, \;) are independent, with rates A = (1,1.5,2,2.5, 3),
and mixing probabilities § = (0.1,0.2,0.2,0.3,0.2).

This example is similar to the previous one. Sample from 1:5 with prob-
ability weights 6 to get a vector length n. The *" position in this vector
indicates which of the five gamma distributions is sampled to get the it" el-
ement of the sample. This vector is used to select the correct rate parameter
from the vector .

n <- 5000

p <- ¢(.1,.2,.2,.3,.2)

lambda <- c(1,1.5,2,2.5,3)

k <- sample(1:5, size=n, replace=TRUE, prob=p)
rate <- lambdal[k]

x <- rgamma(n, shape=3, rate=rate)

Note that 1lambda [k] is a vector the same length as k, containing the elements
of lambda indexed by the vector k. In mathematical notation, lambda [k] is
equal t0 (Mg, Mkgy - -y Ay, )

Compare the first few entries of k and the corresponding values of rate
with A.

> k[1:8]
[11 51421323
> rate[1:8]

[1] 3.0 1.0 2.5 1.5 1.0 2.0 1.5 2.0
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<

Example 3.14 (Plot density of mixture). Plot the densities (not density
estimates) of the gamma distributions and the mixture in Example 3.13. (This
example is a programming exercise that involves vectors of parameters and
repeated use of the apply function.)

The density of the mixture is

5
f(x) = Z%‘fj(x), x>0, (3.4)

where f; is the Gamma(3, \;) density. To produce the plot, we need a function
to compute the density f(z) of the mixture.

f <- function(x, lambda, theta) {
#density of the mixture at the point x
sum(dgamma(x, 3, lambda) * theta)

}

The function £ computes the density of the mixture (3.4) for a single value of
x. If x has length 1, dgamma(x, 3, lambda) is a vector the same length as
lambda; in this case (fi(z),..., f5(z)). Then dgamma(x, 3, lambda)*theta
is the vector (61 f1(x),...,05f5(x)). The sum of this vector is the density of
the mixture (3.3) evaluated at the point x.

x <- seq(0, 8, length=200)
dim(x) <- length(x) #need for apply

#compute density of the mixture f(x) along x
y <- apply(x, 1, f, lambda=lambda, theta=p)

The density of the mixture is computed by function f applied to the vec-
tor x. The function f takes several arguments, so the additional arguments
lambda=lambda, theta=prob are supplied after the name of the function, f.

A plot of the five densities with the mixture is shown in Figure 3.5. The
code to produce the plot is listed below. The densities f; can be computed
by the dgamma function. A sequence of points x is defined and each of the
densities is computed along x.

#plot the density of the mixture
plot(x, y, type="1", ylim=c(0,.85), lwd=3, ylab="Density")

for (j in 1:5) {
#add the j-th gamma density to the plot
y <- apply(x, 1, dgamma, shape=3, rate=lambdalj])
lines(x, y)



82 Statistical Computing with R

R Note 3.7

The apply function requires a dimension attribute for x. Since x is
a vector, it does not have a dimension attribute by default. The di-
mension of x is assigned by dim(x) <- length(x). Alternately, x <-
as.matrix(x) converts x to a matrix (a column vector), which has a
dimension attribute.

Density
0.4

0.0

FIGURE 3.5: Deunsities from Example 3.14: A mixture (thick line) of several
gamma densities (thin lines).

Example 3.15 (Poisson-Gamma mixture). This is an example of a contin-
uous mixture. The negative binomial distribution is a mixture of Poisson(A)
distributions, where A has a gamma distribution. Specifically, if (X|A = \) ~
Poisson(\) and A ~ Gamma(r, 8), then X has the negative binomial distri-
bution with parameters r and p = /(1 + 8) (see, e.g., [26]). This example
illustrates a method of sampling from a Poisson-Gamma mixture and com-
pares the sample with the negative binomial distribution.

#generate a Poisson-Gamma mixture

n <- 1000
r <- 4
beta <- 3

lambda <- rgamma(n, r, beta) #lambda is random

#now supply the sample of lambda’s as the Poisson mean
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x <- rpois(n, lambda) #the mixture

#compare with negative binomial

mix <- tabulate(x+1) / n

negbin <- round(dnbinom(0:max(x), r, beta/(1l+beta)), 3)
se <- sqrt(negbin * (1 - negbin) / n)

The empirical distribution (first line below) of the mixture agrees very closely
with the pmf of NegBin(4,3/4) (second line).

> round(rbind(mix, negbin, se), 3)

[,411 f(,21 [[,31 [,41 [, [,61 [,71 [,8] [,9]
mix 0.334 0.305 0.201 0.091 0.042 0.018 0.005 0.003 0.001
negbin 0.316 0.316 0.198 0.099 0.043 0.017 0.006 0.002 0.001
se 0.015 0.015 0.013 0.009 0.006 0.004 0.002 0.001 0.001

3.6 Multivariate Distributions

Generators for the multivariate normal distribution, multivariate normal
mixtures, Wishart distribution, and uniform distribution on the sphere in R?
are presented in this section.

3.6.1 Multivariate Normal Distribution

A random vector X = (X1,...,X,) has a d-dimensional multivariate nor-
mal (MVN) distribution denoted Ng4(u, X) if the density of X is

fo) = mwlm/ ep{~(1/D)(x )8 (@ - )}, reR, (35)

where 1 = (p1, ..., pa)”
definite matrix

is the mean vector and ¥ is a d x d symmetric positive

011 012 ... 01d

J921 g922 092d
E =

Od1 042 --- Odd

with entries ¢;; = Cov(X;, X;). Here 7! is the inverse of ¥, and |3 is
the determinant of ¥. The bivariate normal distribution is the special case
N (Mv E)

A random Ng4(p, X)) variate can be generated in two steps. First generate
Z = (Zy,...,24), where Zy,...,Z; are iid standard normal variates. Then
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transform the random vector Z so that it has the desired mean vector p and
covariance structure Y. The transformation requires factoring the covariance
matrix X.

Recall that if Z ~ Ng(u,X), then the linear transformation CZ + b is
multivariate normal with mean Cp+b and covariance CXC7T . If Z is N4(0, I4),
then

CZ + b~ Ny(b,CCT).

Suppose that ¥ can be factored so that ¥ = CC? for some matrix C. Then
CZ 4~ Ng(p, %),

and C'Z + u is the required transformation.

The required factorization of 3 can be obtained by the spectral decompo-
sition method (eigenvector decomposition), Choleski factorization, or singular
value decomposition (svd). The corresponding R functions are eigen, chol,
and svd.

Usually, one does not apply a linear transformation to the random vectors
of a sample one at a time. Typically, one applies the transformation to a
data matrix and transforms the entire sample. Suppose that Z = (Z;;) is
an n x d matrix where Z;; are iid N(0,1). Then the rows of Z are n random
observations from the d-dimensional standard MVN distribution. The required
transformation applied to the data matrix is

X=2Q+ Ju", (3.6)

where Q7@ = ¥ and J is a column vector of ones. The rows of X are n random
observations from the d-dimensional MVN distribution with mean vector p
and covariance matrix 3.

Method for generating multivariate normal samples

To generate a random sample of size n from the Ng(u, ) distribution:

1. Generate an n x d matrix Z containing nd random N (0, 1) variates
(n random vectors in R?).

2. Compute a factorization ¥ = QT Q.
3. Apply the transformation X = ZQ + JuT.

4. Deliver the n x d matrix X.
Each row of X is a random variate from the Ny(u,X) distribution.

The X = ZQ + Ju” transformation can be coded in R as follows. Recall
that the matrix multiplication operator is %*%.

Z <- matrix(rnorm(n*d), nrow = n, ncol = d)
X <= Z %*% Q + matrix(mu, n, d, byrow = TRUE)
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The matrix product JuT isequal tomatrix(mu, n, d, byrow = TRUE). This
saves a matrix multiplication. The argument byrow = TRUE is necessary here;
the default is byrow = FALSE. The matrix is filled row by row with the entries
of the mean vector mu.

In this section, each method of generating MVN random samples is il-
lustrated with examples. Also note that there are functions provided in R
packages for generating multivariate normal samples. See the mvrnorm func-
tion in the MASS package [293], and rmvnorm in the mvtnorm package [121].
In all of the examples below, the rnorm function is used to generate standard
normal random variates.

Spectral decomposition method for generating N;(u, ) samples

The square root of the covariance is ¥'/2 = PAY2P~1 where A is the di-
agonal matrix with the eigenvalues of ¥ along the diagonal and P is the matrix
whose columns are the eigenvectors of ¥ corresponding to the eigenvalues in
A. This method can also be called the eigen-decomposition method. In the
eigen-decomposition we have P~! = PT and therefore £/2 = PAY/2PT . The
matrix Q = ¥'/2 is a factorization of ¥ such that QTQ = X.

Example 3.16 (Spectral decomposition method). This example provides a
function rmvn.eigen to generate a multivariate normal random sample. It is
applied to generate a bivariate normal sample with zero mean vector and

1.0 0.9
Z_{0.9 1.0]'

# mean and covariance parameters
mu <- c(0, 0)
Sigma <- matrix(c(1, .9, .9, 1), nrow = 2, ncol = 2)

The eigen function returns the eigenvalues and eigenvectors of a matrix.

rmvn.eigen <-
function(n, mu, Sigma) {
# generate n random vectors from MVN(mu, Sigma)
# dimension is inferred from mu and Sigma
d <- length(mu)
ev <- eigen(Sigma, symmetric = TRUE)
lambda <- ev$values
V <- ev$§vectors
R <- V %% diag(sqrt(lambda)) %*% t(V)
Z <- matrix(rnorm(n*d), nrow = n, ncol = d)
X <- Z %*) R + matrix(mu, n, d, byrow = TRUE)
X
}

Print summary statistics and display a scatterplot as a check on the results
of the simulation.



86 Statistical Computing with R

# generate the sample
X <- rmvn.eigen(1000, mu, Sigma)

plot(X, xlab = "x", ylab = "y", pch = 20)

> print(colMeans (X))
[1] -0.001628189 0.023474775

> print (cor (X))

[,1] [,2]
[1,] 1.0000000 0.8931007
[2,] 0.8931007 1.0000000

Output from Example 3.16 shows the sample mean vector is (—0.002, 0.023)
and sample correlation is 0.893, which agree closely with the specified param-
eters. The scatter plot of the sample data shown in Figure 3.6 exhibits the
elliptical symmetry of multivariate normal distributions. o

.

s ., o
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~ o DY

u‘r‘-

FIGURE 3.6: Scatterplot of a random bivariate normal sample with mean
vector zero, variances 0? = 03 = 1 and correlation p = 0.9, from Example

3.16.

SVD Method of generating N,(u,Y) samples

The singular value decomposition (svd) generalizes the idea of eigenvectors
to rectangular matrices. The svd of a matrix X is X = UDVT, where D is
a vector containing the singular values of X, U is a matrix whose columns
contain the left singular vectors of X, and V' is a matrix whose columns contain
the right singular vectors of X. The matrix X in this case is the population
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covariance matrix 3, and UV”T = I. The svd of a symmetric positive definite
matrix ¥ gives U = V = P and £/2 = UDY2VT. Thus the svd method
for this application is equivalent to the spectral decomposition method, but is
less efficient because the svd method does not take advantage of the fact that
the matrix ¥ is square symmetric.

Example 3.17 (SVD method). This example provides a function rmvn.svd
to generate a multivariate normal sample, using the svd method to factor 3.

rmvn.svd <-
function(n, mu, Sigma) {
# generate n random vectors from MVN(mu, Sigma)

# dimension is inferred from mu and Sigma
d <- length(mu)
S <- svd(Sigma)
R <- S$u %*’, diag(sqrt(S$d)) %*% t(S$v) #sq. root Sigma
Z <- matrix(rnorm(n*d), nrow=n, ncol=d)
X <- Z %% R + matrix(mu, n, d, byrow=TRUE)
X
}
This function is applied in Example 3.19. o

Choleski factorization method of generating N;(u, ) samples

The Choleski factorization of a real symmetric positive-definite matrix is
X = Q7Q, where Q is an upper triangular matrix. The Choleski factorization
is implemented in the R function chol. The basic syntax is chol(X) and the
return value is an upper triangular matrix R such that RTR = X.

Example 3.18 (Choleski factorization method). The Choleski factoriza-
tion method is applied to generate 200 random observations from a four-
dimensional multivariate normal distribution.

rmvn.Choleski <-
function(n, mu, Sigma) {
# generate n random vectors from MVN(mu, Sigma)
dimension is inferred from mu and Sigma
<- length(mu)
<- chol(Sigma) # Choleski factorization of Sigma
<- matrix(rnorm(n*d), nrow=n, ncol=d)
<= Z %*% Q + matrix(mu, n, d, byrow=TRUE)

MM NO QA H

}

In this example, we will generate the samples according to the same mean and
covariance structure as the four-dimensional iris virginica data.

y <- subset(x=iris, Species=="virginica")[, 1:4]
mu <- colMeans(y)
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Sigma <- cov(y)

> mu

Sepal.Length Sepal.Width Petal.Length Petal.Width
6.588 2.974 5.552 2.026

> Sigma

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length  0.40434286 0.09376327 0.30328980 0.04909388
Sepal.Width 0.09376327 0.10400408 0.07137959 0.04762857
Petal.Length  0.30328980 0.07137959  0.30458776 0.04882449
Petal.Width 0.04909388 0.04762857  0.04882449 0.07543265

#now generate MVN data with this mean and covariance
X <- rmvn.Choleski(200, mu, Sigma)
pairs(X)

The pairs plot of the data in Figure 3.7 gives a 2-D view of the bivariate
distribution of each pair of marginal distributions. The joint distribution of
each pair of marginal distributions is theoretically bivariate normal. The plot
can be compared with Figure 5.1, which displays the iris virginica data. (The
iris virginica data are not multivariate normal, but means and correlation for
each pair of variables should be similar to the simulated data.) ©

Sepal.Length

Sepal.Width

25 30 35 40

Petal.Length b

Petal. Width

15 20 25

T
50 60 70 45 50 55 60 65

FIGURE 3.7: Pairs plot of the bivariate marginal distributions of a simulated
multivariate normal random sample in Example 3.18. The parameters match
the mean and covariance of the iris virginica data.

Remark 3.3. To standardize a multivariate normal sample, we invert the pro-
cedure above, substituting the sample mean vector and sample covariance
matrix if the parameters are unknown. The transformed d-dimensional sam-
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ple then has zero mean vector and covariance Iz. This is not the same as
scaling the columns of the data matrix. o

Comparing Performance of Generators

We have discussed several methods for generating random samples from
specified probability distributions. When several methods are available, which
method is preferred? One consideration may be the computational time re-
quired (the time complexity). Another important consideration, if the purpose
of the simulation is to estimate one or more parameters, is the variance of the
estimator. The latter topic is considered in Chapter 6. To compare the empiri-
cal performance with respect to computing time, we can time each procedure.

R provides the system.time function, which times the evaluation of its
argument. This function can be used as a rough benchmark to compare the
performance of different algorithms. In the next example, the system.time
function is used to compare the CPU time required for several different meth-
ods of generating multivariate normal samples.

Example 3.19 (Comparing performance of MVN generators). This example
generates multivariate normal samples in a higher dimension (d = 30) and
compares the timing of each of the methods presented in Section 3.6.1 and
two generators available in R packages. This example uses a function rmvnorm
in the package mvtnorm [121]. This package is not part of the standard R
distribution, but can be installed from CRAN. The MASS package [293] is one
of the recommended packages included with the R distribution.

library (MASS)

library(mvtnorm)

n <- 100 #sample size
d <- 30 #dimension
N <- 2000 #iterations

mu <- numeric(d)

set.seed(100)
system.time(for (i in 1:N)

rmvn.eigen(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvn.svd(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvn.Choleski(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

mvrnorm(n, mu, cov(matrix(rnorm(n*d), n, d))))
set.seed(100)
system.time(for (i in 1:N)

rmvnorm(n, mu, cov(matrix(rnorm(n*d), n, d))))
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set.seed(100)
system.time(for (i in 1:N)
cov(matrix(rnorm(n*d), n, 4)))

Most of the work involved in generating a multivariate normal sample is the
factorization of the covariance matrix. The covariances used for this example
are actually the sample covariances of standard multivariate normal samples.
Thus, the randomly generated 3 varies with each iteration, but ¥ is close
to an identity matrix. In order to time each method on the same covariance
matrices, the random number seed is restored before each run. The last run
simply generates the covariances, for comparison with the total time.

The results below (summarized from the console output) suggest that there
are differences in performance among these five methods when the covariance
matrix is close to identity. The Choleski method is somewhat faster, while
rmvn.eigen and mvrnorm (MASS) [293] appear to perform about equally well.
The similar performance of rmvn.eigen and mvrnorm is not surprising, be-
cause according to the documentation for mvrnorm, the method of matrix
decomposition is the eigendecomposition. Documentation for mvrnorm states
that “although a Choleski decomposition might be faster, the eigendecompo-
sition is stabler.”

Timings of MVN generators

user system elapsed

rmvn.eigen 1.78 0.00 1.77
rmvn.svd 2 0 2

rmvn.choleski 1.22 0.02 1.27
mvrnorm 1.77 0.00 1.77
rmvnorm 2.17 0.00 2.17

generate Sigma 0.64 0.00 0.65
o
The system.time function was also used to compare the methods in Ex-
amples 4.1 and 4.2. The code (not shown) is similar to the examples above.
See Chapter 15, on the topic of benchmarking, for more convenient meth-
ods of comparing running times of functions. Example 15.3 shows a simpler

way to compare the timings above that automatically produces a table and
relative timings.

3.6.2 Mixtures of Multivariate Normals

A multivariate normal mixture is denoted

PNa(p1, X1) + (1 = p)Na(p2, %) (3.7)

where the sampled population is Ng(u1, ¥1) with probability p, and Ng(ue, X2)
with probability 1 — p. As the mixing parameter p and other parameters are
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varied, the multivariate normal mixtures have a wide variety of types of de-
partures from normality. For example, a 50% normal location mixture is sym-
metric with light tails, and a 90% normal location mixture is skewed with
heavy tails. A normal location mixture with p = 1 — (1 — ?) = 0.7887,
provides an example of a skewed distribution with normal kurtosis [147]. Pa-
rameters can be varied to generate a wide variety of distributional shapes.
Johnson [160] gives many examples for the bivariate normal mixtures. Many
commonly applied statistical procedures do not perform well under this type
of departure from normality, so normal mixtures are often chosen to compare
the properties of competing robust methods of analysis.

If X has the distribution (3.7), then a random observation from the dis-
tribution of X can be generated as follows.

To generate a random sample from pNy(p1,X1) + (1 — p) Ng(pe, X2)
1. Generate U ~ Uniform(0,1).

2. If U < p generate X from Ng(u1,31);
otherwise generate X from Ny(uz, X2).

The following procedure is equivalent.
1. Generate N ~ Bernoulli(p).

2. If N =1 generate X from Ny(p1,%1);
otherwise generate X from Ng(uz, X2).

Example 3.20 (Multivariate normal mixture). Write a function to generate
a multivariate normal mixture with two components. The components of a
location mixture differ in location only. Use the mvrnorm(MASS) function [293]
to generate the multivariate normal observations.

First we write this generator in an inefficient loop to clearly illustrate the
steps outlined above. (We will eliminate the loop later.)

library(MASS) #for mvrnorm
#inefficient version loc.mix.0 with loops

loc.mix.0 <- function(n, p, mul, mu2, Sigma) {
#generate sample from BVN location mixture
X <- matrix(0, n, 2)

for (i in 1:n) {
k <- rbinom(1l, size = 1, prob = p)
if (k)
X[i,] <- mvrnorm(1l, mu = mul, Sigma) else
X[i,] <- mvrnorm(1l, mu = mu2, Sigma)

}

return(X)
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Although the code above will generate the required mixture, the loop is
rather inefficient. Generate n;, the number of observations realized from the
first component, from Binomial(n, p). Generate n, variates from component 1
and ny = n—n; from component 2 of the mixture. Generate a random permu-
tation of the indices 1:n to indicate the order in which the sample observations
appear in the data matrix.

#more efficient version

loc.mix <- function(n, p, mul, mu2, Sigma) {
#generate sample from BVN location mixture
nl <- rbinom(1l, size = n, prob = p)
n2 <- n - nl
x1 <- mvrnorm(nl, mu = mul, Sigma)
x2 <- mvrnorm(n2, mu = mu2, Sigma)
X <- rbind(xl, x2) #combine the samples
return(X[sample(1l:n), 1) #mix them

}

To illustrate the normal mixture generator, we apply loc.mix to generate
a random sample of n = 1000 observations from a 50% 4-dimensional normal
location mixture with pq = (0,0,0,0) and pe = (2,3,4,5) and covariance I4.

x <- loc.mix (1000, .5, rep(0, 4), 2:5, Sigma = diag(4))

r <- range(x) * 1.2

par (mfrow = c(2, 2))

for (i in 1:4)
hist(x[ , i], xlim = r, ylim = c(0, .3), freq = FALSE,
main = "", breaks = seq(-5, 10, .5))

par(mfrow = c(1, 1))

It is difficult to visualize data in R*, so we display only the histograms of the
marginal distributions in Figure 3.8. All of the one-dimensional marginal dis-
tributions are univariate normal location mixtures. Methods for visualization
of multivariate data are covered in Chapter 5. Also, an interesting view of a
bivariate normal mixture with three components is shown in Figure 12.13. ©

3.6.3 Wishart Distribution

Suppose M = X7 X, where X is an n x d data matrix of a random sample
from a Ng(p,X) distribution. Then M has a Wishart distribution with scale
matrix ¥ and n degrees of freedom, denoted M ~ Wy(X,n) (see, e.g., [13,
194]). Note that when d = 1, the elements of X are a univariate random
sample from N(u,0?) so Wi(o?,n) 2 a?x?(n).

An obvious, but inefficient, approach to generating random variates from a
Wishart distribution is to generate multivariate normal random samples and
compute the matrix product X7 X. This method is computationally expensive
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FIGURE 3.8: Histograms of the marginal distributions of multivariate nor-
mal location mixture data generated in Example 3.20.

because nd random normal variates must be generated to determine the d(d+
1)/2 distinct entries in M.

A more efficient method based on Bartlett’s decomposition [25] is summa-
rized by Johnson [160, p. 204] as follows. Let T' = (T;;) be a lower triangular
d x d random matrix with independent entries satisfying

1 T,; % N(0,1),i> j.

2. Ty~ X2(n—i+1),i=1,...,d.

Then the matrix A = TT7T has a Wy(14,n) distribution. To generate Wy(%, n)
random variates, obtain the Choleski factorization ¥ = LLT, where L is lower
triangular. Then LALT ~ Wy(X,n) [25, 140, 218]. Implementation is left as
an exercise.

3.6.4 Uniform Distribution on the d-Sphere

The d-sphere is the set of all points 2 € R? such that ||z|| = («72)"/2 = 1.
Random vectors uniformly distributed on the d-sphere have equally likely
directions. A method of generating this distribution uses a property of the
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multivariate normal distribution (see [97, 160]). If X3, ..., X4 are iid N(0,1),

then U = (Uy, ..., Uy) is uniformly distributed on the unit sphere in R, where
X

U, = J j=1,...,d. 3.8

J (X12++X3)1/2’ J ) ) ( )

Algorithm to generate uniform variates on the d-Sphere

1. For each variate u;, ¢ = 1,...,n repeat
(a) Generate a random sample x;1, ..., x;q from N(0,1).
(b) Compute the Euclidean norm ||z;|| = (22 + - -+ + x2,)}/2,
(c) Set uij = zi;/||zll, 5 =1,...,d.
(d) Deliver u; = (ui1, ..., Uid)-

To implement these steps efficiently in R for a sample size n,

1. Generate nd univariate normals in n x d matrix M. The it" row of M
corresponds to the i*" random vector w;.

2. Compute the denominator of (3.8) for each row, storing the n norms in
vector L.

3. Divide each number M[i,j] by the norm L[i], to get the matrix U,
where Ul1,] = u; = (U1, - ., Uiq)-

4. Deliver matrix U containing n random observations in rows.

Example 3.21 (Generating variates on a sphere). This example provides
a function to generate random variates uniformly distributed on the unit d-
sphere.

runif.sphere <- function(n, d) {
# return a random sample uniformly distributed
# on the unit sphere in R °d
M <- matrix(rnorm(n*d), nrow = n, ncol = d)
L <- apply(M, MARGIN = 1,
FUN = function(x){sqrt(sum(x*x))})

D <- diag(l / L)
U <- D %*% M
U

}

The function runif.sphere is used to generate a sample of 200 points uni-
formly distributed on the circle.

#generate a sample in d=2 and plot

X <- runif.sphere(200, 2)

par(pty = "s")

plot (X, xlab = bquote(x[1]), ylab = bquote(x[2]))
par(pty = "m")
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The circle of points is shown in Figure 3.9. o

R Note 3.8

The apply function in runif.sphere returns a vector containing the
n norms ||z1]], ||z2||,- .., ||z.| of the sample vectors in matrix M.

R Note 3.9

The command par(pty = "s") sets the square plot type so the circle
is round rather than elliptical; par(pty = "m") restores the type to
maximal plotting region. See the help topic ?par for other plot param-
eters.
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FIGURE 3.9: A random sample of 200 points from the bivariate distribution
(X1, X2) that is uniformly distributed on the unit circle in Example 3.21.

Uniformly distributed points on a hyperellipsoid can be generated by ap-
plying a suitable linear transformation to a Uniform sample on the d-sphere.
Fishman [97, 3.28] gives an algorithm for generating points in and on a sim-
plex.
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Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Write a function that will generate and return a random sample of size
n from the two-parameter exponential distribution Exp(A,n) for arbi-
trary n, A, and 7. (See Examples 2.3 and 2.6.) Generate a large sample
from Exp()\,n) and compare the sample quantiles with the theoretical
quantiles.

The standard Laplace distribution has density f(z) = e~ "I, 2 € R.
Use the inverse transform method to generate a random sample of size
1000 from this distribution. Use one of the methods shown in this chap-
ter to compare the generated sample to the target distribution.

The Pareto(a, b) distribution has cdf

b a
F(x)—l—() , z>b>0,a>0.
x
Derive the probability inverse transformation F~(U) and use the in-
verse transform method to simulate a random sample from the Pareto(2,
2) distribution. Graph the density histogram of the sample with the
Pareto(2, 2) density superimposed for comparison.

The Rayleigh density [162, Ch. 18] is
flx) = %6712/(202), x>0,0>0.
o
Develop an algorithm to generate random samples from a Rayleigh(o)
distribution. Generate Rayleigh(c) samples for several choices of o >
0 and check that the mode of the generated samples is close to the
theoretical mode o (check the histogram).

A discrete random variable X has probability mass function

x 0 1 2 3 4
p(z) 0.1 02 02 02 03

Use the inverse transform method to generate a random sample of size
1000 from the distribution of X. Construct a relative frequency table
and compare the empirical with the theoretical probabilities. Repeat
using the R sample function.

Prove that the accepted variates generated by the acceptance-rejection
sampling algorithm are a random sample from the target density fx.

Write a function to generate a random sample of size n from the
Beta(a, b) distribution by the acceptance-rejection method. Generate
a random sample of size 1000 from the Beta(3,2) distribution. Graph
the histogram of the sample with the theoretical Beta(3,2) density su-
perimposed.
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3.9

3.10

3.11

3.12

3.13

3.14
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Write a function to generate random variates from a Lognormal(u, o)
distribution using a transformation method, and generate a random
sample of size 1000. Compare the histogram with the lognormal density
curve given by the dlnorm function in R.

The rescaled Epanechnikov kernel [92] is a symmetric density function

) =30-2), <L (3.9

Devroye and Gyorfi [74, p. 236] give the following algorithm for simu-
lation from this distribution. Generate iid Uy, Uy, Us ~ Uniform(—1, 1).
If |[Us| > |Uz| and |Us| > |Ui], deliver Us; otherwise deliver Us. Write
a function to generate random variates from f., and construct the his-
togram density estimate of a large simulated random sample.

Prove that the algorithm given in Exercise 3.9 generates variates from
the density f. (3.9).

Generate a random sample of size 1000 from a normal location mixture.
The components of the mixture have N(0,1) and N(3,1) distributions
with mixing probabilities p; and ps = 1 — p;. Graph the histogram
of the sample with density superimposed, for p; = 0.75. Repeat with
different values for p; and observe whether the empirical distribution of
the mixture appears to be bimodal. Make a conjecture about the values
of p; that produce bimodal mixtures.

Simulate a continuous Exponential-Gamma mixture. Suppose that the
rate parameter A has Gamma(r, 5) distribution and Y has Exp(A) dis-
tribution. That is, (Y|A = \) ~ fy (y|\) = Ae™*Y. Generate 1000 ran-
dom observations from this mixture with »r =4 and g = 2.

It can be shown that the mixture in Exercise 3.12 has a Pareto distri-

bution with cdf
B )T
Fiy)=1-(="—), y>0
w=1-(55) v

(This is an alternative parameterization of the Pareto cdf given in Ex-
ercise 3.3.) Generate 1000 random observations from the mixture with
r = 4 and f = 2. Compare the empirical and theoretical (Pareto)
distributions by graphing the density histogram of the sample and su-
perimposing the Pareto density curve.

Generate 200 random observations from the 3-dimensional multivariate
normal distribution having mean vector ¢ = (0,1,2) and covariance
matrix

1.0 — 05 0.5
Y= — 0.5 1.0 - 0.5
0.5 — 0.5 1.0

using the Choleski factorization method. Use the R pairs plot to graph
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3.15

3.16

3.17

3.18
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an array of scatter plots for each pair of variables. For each pair of vari-
ables, (visually) check that the location and correlation approximately
agree with the theoretical parameters of the corresponding bivariate
normal distribution.

Write a function that will standardize a multivariate normal sample for
arbitrary n and d. That is, transform the sample so that the sample
mean vector is zero and sample covariance is the identity matrix. To
check your results, generate multivariate normal samples and print the
sample mean vector and covariance matrix before and after standard-
ization.

Efron and Tibshirani discuss the scor (bootstrap) test score data on
88 students who took examinations in five subjects [91, Table 7.1], [194,
Table 1.2.1]. Each row of the data frame is a set of scores (2;1, ..., 2;5)
for the i*" student. Standardize the scores by type of exam. That
is, standardize the bivariate samples (X7, X5) (closed book) and the
trivariate samples (X3, X4, X5) (open book). Compute the covariance
matrix of the transformed sample of test scores.

Compare the performance of the Beta generator of Exercise 3.7, Exam-
ple 3.8 and the R generator rbeta. Fix the parameters a = 2,b = 2
and time each generator on 1000 iterations with sample size 5000. (See
Example 3.19.) Are the results different for different choices of @ and b?

Write a function to generate a random sample from a Wy(X,n)
(Wishart) distribution for n > d+1 > 1, based on Bartlett’s decompo-
sition.



Chapter 4

Generating Random Processes

4.1 Stochastic Processes

A stochastic process is a collection {X(¢) : ¢t € T} of random variables
indexed by the set T', which usually represents time. The index set T' could
be discrete or continuous. The set of possible values X (¢) can take is the state
space, which also can be discrete or continuous. Ross [251] is an excellent
introduction to stochastic processes, and includes a chapter on simulation.

A counting process records the number of events or arrivals that occur by
time ¢. A counting process has independent increments if the number of arrivals
in disjoint time intervals are independent. A counting process has stationary
increments if the number of events occurring in an interval depends only on
the length of the interval. An example of a counting process is a Poisson
process.

To study a counting process through simulation, we can generate a real-
ization of the process that records events for a finite period of time. The set
of times of consecutive arrivals records the outcome and determines the state
X(t) at any time t. In a simulation, the sequence of arrival times must be
finite. One method of simulation for a counting process is to choose a suffi-
ciently long time interval and generate the arrival times or the interarrival
times in this interval.

4.1.1 Poisson Processes

A homogeneous Poisson process {N(t),t > 0} with rate A is a counting
process, with independent increments, such that N(0) = 0 and

P(N(s—i—t)—N(s):n):(aAt?(l#)n, n>0,ts>0. (4.1)

Thus, a homogeneous Poisson process has stationary increments and the num-
ber of events N(t) in [0,¢] has the Poisson(At) distribution. If 77 is the time
until the first arrival,

P(Ty >t)=P(N(t)=0)=e ™, t>0,

99
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so T is exponentially distributed with rate A. The interarrival times Ty, 5, . . .
are the times between successive arrivals. The interarrival times are iid expo-
nentials with rate A, which follows from (4.1) and the memoryless property of
the exponential distribution.

One method of simulating a Poisson process is to generate the interarrival
times. Then the time of the n*" arrival is the sum S,, = Ty + --- 4+ T}, (the
waiting time until n'* arrival). A sequence of interarrival times {7,}°%, or
sequence of arrival times {S,}72, are a realization of the process. Thus, a
realization is an infinite sequence, rather than a single number. In a simulation,
the finite sequence of interarrival times {7, }N_; or arrival times {S,, }_, are
a simulated realization of the process on the interval [0, Sy).

Another method of simulating a Poisson process is to use the fact that the
conditional distribution of the (unordered) arrival times given N (t) = n is the
same as that of a random sample of size n from a Uniform(0,¢) distribution.

The state of the process at a given time ¢ is equal to the number of arrivals
in [0, ¢], which is the number min(k : S > t) —1. That is, N(¢) = n—1, where
Sy, is the smallest arrival time exceeding ¢.

Algorithm for simulating a homogeneous Poisson process on an in-
terval [0, o] by generating interarrival times.

1. Set Sl =0.
2. For j =1,2,... while §; < to:

(a) Generate T ~ Exp(A).
(b) Set Sj :T1++Tj

3. N(to) = minj(Sj > to) — 1.

It is inefficient to implement this algorithm in R using a for loop. It should
be translated into vectorized operations, as shown in the next example.

Example 4.1 (Poisson process). This example illustrates a simple approach
to simulation of a Poisson process with rate A. Suppose we need N(3), the
number of arrivals in [0, 3]. Generate iid exponential times T; with rate A and
find the index n where the cumulative sum S,, = 77 + - - - + T, first exceeds 3.

It follows that the number of arrivals in [0, 3] is n— 1. On average this number
is E[N(3)] = 3.

lambda <- 2

t0 <- 3

Tn <- rexp(100, lambda) #interarrival times
Sn <- cumsum(Tn) #arrival times

n <- min(which(Sn > t0)) #arrivals+1 in [0, tO]

Results from two runs are shown below.
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> n-1

[1] 8

> round(Sn[1:n], 4)

[1] 1.2217 1.3307 1.3479 1.4639 1.9631 2.0971
2.3249 2.3409 3.9814

> n-1

[1] 5

> round(Sn[1:n], 4)

[1] 0.4206 0.8620 1.0055 1.6187 2.6418 3.4739

For this example, the average of simulated values N(3) = n — 1 for a large
number of runs should be close to E[N(3)] = 3\ = 6. o

An alternate method of generating the arrival times of a Poisson process
is based on the fact that given the number of arrivals in an interval (0,t),
the conditional distribution of the unordered arrival times are uniformly dis-
tributed on (0,¢). That is, given that the number of arrivals in (0,t) is n, the
arrival times Sp,...,S, are jointly distributed as an ordered random sample
of size n from a Uniform(0, t) distribution.

Applying the conditional distribution of the arrival times, it is possible to
simulate a Poisson(A) process on an interval (0, ¢) by first generating a random
observation n from the Poisson(At) distribution, then generating a random
sample of n Uniform(0,¢) observations and ordering the uniform sample to
obtain the arrival times.

Example 4.2 (Poisson process, cont.). Returning to Example 4.1, simulate
a Poisson(\) process and find N(3), using the conditional distribution of the
arrival times. As a check, we estimate the mean and variance of N(3) from
10000 replications.

lambda <- 2
t0 <- 3
upper <- 100

pp <- numeric(10000)
for (4 in 1:10000) {
N <- rpois(1l, lambda * upper)

Un <- runif(N, O, upper) #unordered arrival times
Sn <- sort(Un) #arrival times

n <- min(which(Sn > t0)) #arrivals+1 in [0, tO]
ppli]l <-n -1 #arrivals in [0, tO]

}

Alternately, the loop can be replaced by replicate, as shown.

pp <- replicate(10000, expr = {
N <- rpois(l, lambda * upper)
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Un <- runif(N, O, upper) #unordered arrival times
Sn <- sort(Un) #tarrival times

n <- min(which(Sn > t0)) #arrivals+1 in [0, tO]
n-1 1} #arrivals in [0, tO]

The mean and variance should both be equal to At = 6 in this example. Here
the sample mean and sample variance of the generated values N(3) are indeed
very close to 6.

> c(mean(pp), var(pp))
[1] 5.977100 5.819558

Actually, it is possible that none of the generated arrival times exceed the time
to = 3. In this case, the process needs to be simulated for a longer time than
the value in upper. Therefore, in practice, one should choose upper according
to the parameters of the process, and do some error checking. For example,
if we need N(ty), one approach is to wrap the min(which()) step with try
and check that the result of try is an integer using is.integer. See the
corresponding help topics for details.

Ross [251] discusses the computational efficiency of the two methods ap-
plied in Examples 4.1 and 4.2. Actually, the second method is considerably
slower (by a factor of 4 or 5) than the previous method of Example 4.1 when
coded in R. The rexp generator is almost as fast as runif, while the sort
operation adds O(nlog(n)) time. Some performance improvement might be
gained if this algorithm is coded in C and a faster sorting algorithm designed
for uniform numbers is used. o

Nonhomogeneous Poisson Processes

A counting process is a Poisson process with intensity function A(t), t > 0
if N(t) =0, N(t) has independent increments, and for h > 0,

P(N(t+h)— N(t) >2)
P(N(t+h)—N(t)=1)
The Poisson process N (t) is nonhomogeneous if the intensity function A(t) is

not constant. A nonhomogeneous Poisson process has independent increments
but does not have stationary increments. The distribution of

o(h), and
A(t)h + o(h).

N(s+t)— N(s)

is Poisson with mean fss+t A(y)dy. The function m(t) = E[N(t)] = fot A(y)dy
is called the mean value function of the process. Note that m(t) = A in the
case of the homogeneous Poisson process, where the intensity function is a
constant.

Every nonhomogeneous Poisson process with a bounded intensity function
can be obtained by time sampling a homogeneous Poisson process. Suppose
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that A(t) < A < oo for all ¢ > 0. Then sampling a Poisson(\) process such
that an event happening at time t is accepted or counted with probability
A(t)/X\ generates the nonhomogeneous process with intensity function A(t).
To see this, let N(t) be the number of accepted events in [0, ¢]. Then N(¢) has
the Poisson distribution with mean

t t
)= [ 2 ay = [y
0o A 0

To simulate a nonhomogeneous Poisson process on an interval [0, ¢o], find
Ao < oo such that A(t) <= Ao, 0 < t < tg. Then generate from the homoge-
neous Poisson(\g) process the arrival times {S;}, and accept each arrival with
probability A(S;)/Ao. The steps to simulate the process on an interval [0, ¢o)
are as follows.

Algorithm for simulating a nonhomogeneous Poisson process on an
interval [0,¢y] by sampling from a homogeneous Poisson process.

1. Set S; =0.
2. For j =1,2,... while §; < to:

(a) Generate T; ~ Exp(Xg) and set S; =Ty +--- +T}.

(b) Generate U; ~ Uniform(0,1).

(c) If U; < A(S;)/Ao accept (count) this arrival and set I; = 1;
otherwise I; = 0.

3. Deliver the arrival times {S; : I; = 1}.

Although this algorithm is quite simple, for implementation in R it is
more efficient if translated into vectorized operations. This is shown in the
next example.

Example 4.3 (Nonhomogeneous Poisson process). Simulate a realization
from a nonhomogeneous Poisson process with intensity function A(¢) =
3cos?(t). Here the intensity function is bounded above by A = 3, so the j'"
arrival is accepted if U; < 3cos?(S;)/3 = cos?(5}).

lambda <- 3

upper <- 100

N <- rpois(1l, lambda * upper)

Tn <- rexp(N, lambda)

Sn <- cumsum(Tn)

Un <- runif(N)

keep <- (Un <= cos(Sn)~2) #indicator, as logical vector
Sn [keep]

Now, the values in Sn[keep] are the ordered arrival times of the nonhomoge-
neous Poisson process.
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> round(Sn[keep], 4)

[1] 0.0237 0.5774 0.5841 0.6885 2.3262
2.4403 2.9984 3.4317 3.7588 3.9297

[11] 4.2962 6.2602 6.2862 6.7590 6.8354
7.0150 7.3517 8.3844 9.4499 9.4646

To determine the state of the process at time ¢t = 27, for example, refer to the
entries of Sn indexed by keep.

> sum(Sn[keep] <= 2xpi)
[1]1 12

> table(keep)/N
keep

FALSE TRUE
0.4969325 0.5030675

Thus N (27) = 12, and in this example approximately 50% of the arrivals were
counted. o

4.1.2 Renewal Processes

A renewal process is a generalization of the Poisson process. If {N(¢),t > 0}
is a counting process, such that the sequence of nonnegative interarrival times
Ty, Ty, ... are iid (not necessarily exponential distribution), then {N(¢),t > 0}
is a renewal process. The function m(t) = E[N(t)] is called the mean value
function of the process, which uniquely determines the distribution of the
interarrival times.

If the distribution Frp(t) of the iid interarrival times is specified, then a
renewal process can be simulated by generating the sequence of interarrival
times, by a method similar to Example 4.1.

Example 4.4 (Renewal process). Suppose the interarrival times of a renewal
process have the geometric distribution with success probability p. (This exam-
ple is discussed in [251].) Then the interarrival times are nonnegative integers,
and S; =Ty + --- 4+ T} have the negative binomial distribution with size pa-
rameter 7 = j and probability p. The process can be simulated by generating
geometric interarrival times and computing the consecutive arrival times by
the cumulative sum of interarrival times.

t0 <- 5

Tn <- rgeom(100, prob = .2)  #interarrival times
Sn <- cumsum(Tn) #arrival times

n <- min(which(Sn > t0)) #arrivals+1 in [0, tO]

The distribution of N(tp) can be estimated by replicating the simulation
above.
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NtO <- replicate(1000, expr = {
Sn <- cumsum(rgeom(100, prob = .2))
min(which(Sn > t0)) - 1

b
table(Nt0) /1000
NtO
0 1 2 3 4 5 6 7

0.273 0.316 0.219 0.108 0.053 0.022 0.007 0.002
To estimate the means E[N(t)], vary the time t;.

t0 <- seq(0.1, 30, .1)
mt <- numeric(length(t0))

for (i in 1:length(t0)) {
mt[i] <- mean(replicate(1000,
{
Sn <- cumsum(rgeom(100, prob = .2))
min(which(Sn > tO0[i])) - 1
)
}
plot(t0, mt, type = "1", xlab = "t", ylab = "mean"

Let us compare with the homogeneous Poisson process, where the interarrival
times have a constant mean. Here we have p = 0.2 so the average interarrival
time is 0.8/0.2 = 4. The Poisson process that has mean interarrival time
4 has Poisson parameter A\t = t/4. We added a reference line to the plot
corresponding to the Poisson process mean A\t = t/4 using abline(0, .25).

The plot is shown in Figure 4.1. It should not be surprising that the mean
of the renewal process is very close to At, because the geometric distribution
is the discrete analog of exponential; it has the memoryless property. That is,
if X ~ Geometric(p), then for all j,k=0,1,2,...

. . (1- P)ﬁk k
PX>j+kX>j)=———=(1-p)"=PX > k).
(1—p)
S
4.1.3 Symmetric Random Walk
Let X7, X5,... be a sequence of iid random variables with probability

distribution P(X; = 1) = P(X; = —1) = 1/2. Define the partial sum S,, =
>oi_y Xi. The process {S,,n > 0} is called a symmetric random walk. For
example, if a gambler bets $1 on repeated trials of coin flipping, then S,
represents the gain/loss after n tosses.
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mean
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FIGURE 4.1: Sequence of sample means of a simulated renewal process
in Example 4.4. The reference line corresponds to the mean At = t/4 of a
homogeneous Poisson process.

Example 4.5 (Plot a partial realization of a random walk). It is very simple
to generate a symmetric random walk process over a short time span.

n <- 400

incr <- sample(c(-1, 1), size = n, replace = TRUE)
S <- as.integer(c(0, cumsum(incr)))

plot(0:n, S, type = "1", main = "", xlab = "i")

A partial realization of the symmetric random walk process starting at So = 0
is shown in Figure 4.2. The process has returned to 0 several times within time
[1, 400].

> which(S == 0)
[1] 1 3 27 29 31 37 41 95 225 229 233 237 239 241

The value of S, can be determined by the partial random walk starting at the
most recent time the process returned to 0. o

If the state of the symmetric random walk S,, at time n is required, but
not the history up to time n, then for large n it may be more efficient to
generate S, as follows.

Assume that Sy = 0 is the initial state of the process. If the process has
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FIGURE 4.2: Partial realization of a symmetric random walk in Example
4.5.

returned to the origin before time n, then to generate .S,, we can ignore the
past history up until the time the process most recently hit 0. Let T be the
time until the first return to the origin. Then to generate S,,, one can simplify
the problem by first generating the waiting times 7' until the total time first
exceeds n. Then starting from the last return to the origin before time n,
generate the increments X; and sum them.

Algorithm to simulate the state S,, of a symmetric random walk
The following algorithm is adapted from [72, XIV.6].
Let W; be the waiting time until the j** return to the origin.
1. Set Wy =0.
2. For 7 =1,2,... while W; <n:

(a) Generate a random 7 from the distribution of the time until the
first return to 0.

3. Set to = W; — T (time of last return to 0 in time n.)
4. Set s1 = 0.
5. Generate the increments from time ¢ + 1 until time n:

Fort=1,2,....,n—tp

(a) Generate a random increment x; ~ P(X = +1) =1/2.
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(b) Set S; :I1—|——|—LE1

(¢) If s; = 0 reset the counter to ¢« = 1 (another return to 0 is not
accepted, so reject this partial random walk and generate a new
sequence of increments starting again from time ¢ + 1.)

6. Deliver s;.

To implement the algorithm, one needs to provide a generator for T, the
time until the next return of the process to 0. The probability distribution of
T [72, Thm. 6.1] is given by

P(T = 2”) :p27l = ( 'I’L22n71 = n22n71 I—\z(n)a n 2 17

P(T=2n4+1)=0, n>0.

2n — 2 1 r'(2n—1)
n—1

Example 4.6 (Generator for the time until return to origin). An efficient
algorithm for generating from the distribution 7' is given by Devroye [72,
p. 754]. Here we will apply an inefficient version that is easily implemented in
R. Notice that pa, equals 1/(2n) times the probability P(X = n — 1) where
X ~ Binomial (2n — 2,p = 1/2).

The following methods are equivalent.

#compute the probabilities directly
n <- 1:10000
p2n <- exp(lgamma(2*n-1)
- log(n) - (2*n-1)*log(2) - 2*lgamma(n))

#or compute using dbinom
P2n <- (.5/n) * dbinom(n-1, size = 2#n-2, prob = 0.5)

Recall that if X is a discrete random variable and
< T < T < Ty <.

are the points of discontinuity of Fx(z), then the inverse transformation is
Fy'(u) = x;, where Fx(z;_1) < u < Fx(x;). Therefore, a generator can be
written for values of T" up to 20000 using the probability vector computed
above.

pP2n <- cumsum(P2n)

#for example, to generate one T
u <- runif(1)

Tj <= 2 * (1 + sum(u > pP2n))

Here are two examples to illustrate the method of looking up the solution
Fx(x;-1) < u < Fx(z;) in the probability vector.

#first part of pP2n
[1] 0.5000000 0.6250000 0.6875000 0.7265625 0.7539062 0.7744141
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In the first example v = 0.6612458 and the first return to the origin occurs at
time n = 6, and in the second example v = 0.5313384 and the next return to
the 0 occurs at time n = 4 after the first return to 0. Thus the second return
to the origin occurs at time 10. (The case u > max(pP2n) must be handled
separately.)

Suppose now that n is given and we need to compute the time of the last
return to 0 in (0,n).

n <- 200

sumT <- O

while (sumT <= n) {
u <- runif(1)
s <- sum(u > pP2n)
if (s == length(pP2n)) warning("T is truncated")
Tj <=2 (1 +s)
#print (c(Tj, sumT))
sumT <- sumT + Tj
}

sumT - Tj

In case the random uniform exceeds the maximal value in the cdf vector pP2n,
a warning is issued. Here instead of issuing a warning, one could append to the
vector and return a valid 7. We leave that as an exercise. A better algorithm is
suggested by Devroye [72, p. 754]. One run of the simulation above generates
the times 110, 128, 162, 164, 166, 168, and 210 that the process visits 0
(uncomment the print statement to print the times). Therefore the last visit
to 0 before n = 200 is at time 168.

Finally, Sp9 can be generated by simulating a symmetric random walk
starting from Sigg = 0 for ¢t = 169, . ..,200 (rejecting the partial random walk
if it hits 0). o

4.2 Brownian Motion

One of the most fundamental models in finance and science is the Brownian
motion or Wiener process. The real-valued stochastic process {W;};>¢ such
that

1. Wy = 0 almost surely,
2. W, is almost surely continuous,
3. Wy — W ~N(0,t—35),0<s<t,

4. If 0 < 50 <ty < s < t, then Wy, — W,

s, 1s independent of W; — W
(independent increments),
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is called a (one-dimensional) Brownian motion. The d-dimensional Brownian
motion is the Ré-valued process W (t) = (Wy(t), Wa(t), ..., Wqy(t)), where the
components W;(t) are each independent one-dimensional Brownian motions.

Algorithm to simulate Brownian motion

To simulate a path of a Brownian motion on an interval [0, T] first divide
the interval into n + 1 subintervals by choosing points 0 = tg < t; < t3 <
-++ < tp, =T. Then generate a realization W (w) as follows.

1. Set Wy(w) = 0.
2. For k=1 ton do:

(a) Randomly generate a standard normal Zj, and compute o =
Ve — tr—1.
(b) Set Wi, =Wy, | + orZy.

(¢) For points tp_1 < t < t; use linear interpolation to approximate
Wi(w). That is, set

7(Wtk—l (w) - Wtk—l (w))

Example 4.7 (Simulate Brownian motion). This example provides a function
to implement the simulation algorithm for one-dimensional Brownian motion.
For the purpose of interpolation, we return both the Brownian motion values
and the time sequence values in a list.

simBM <- function(n, T) {
times <- seq(0, T, length = n+1)
z <- rnorm(n)
w <- rep(0, n)
s <- sqrt(diff(times))
for (k in 2:n) {
wlk] <- wlk-1] + s[k] * z[k]
}
return (list(w=w, t=times))

}

To demonstrate the function simBM, we generate three independent Brownian
motions on the interval [0, 1] and plot them in the same window. For the
purpose of plotting, the plot type "l" has the same effect as the linear inter-
polation of the Brownian motion between the endpoints of the time intervals

(th—1,tk)-

set.seed (1)

n <- 200

x1 <- simBM(n, 1)
x2 <- simBM(n, 1)
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x3 <- simBM(n, 1)

r <- range(c(x1$w, x2%w, x3$w))

plot(x1$w, type="1", main="", xlab="t", ylab="W", ylim=r)
lines(x2%w, 1lty=2)

lines(x3%w, 1ty=3)

A function to compute the interpolated values of Wy for t,_1 < t < tj if
required is:

interpBM <- function(w, tO, times) {
k1 <- sum(times < t0)
k <- k1 +1
b <- (t0 - times[k1]) / (times[k] - times[k1])
return (wlk1]l + b * (wlk] - wlk1l))
}

To show that type="1" on the plot matches the linear interpolation, Figure
4.4 has a close-up view of the first few points in the path.

plot(x1$t[1:10], x1$w[1:10], type="b", main="", xlab="t", ylab="W")
tmids <- x1$t + 0.0025
for (i in 1:10) {
w <- interpBM(x1$w, tmids[i], x1$t)
points(tmids[i], w, pch=2)
}

legend("topleft", c("Generated W", "Interpolated W"),
pch=c(1,2), 1lty=1, bty="n")

0 50 100 150 200

FIGURE 4.3: Simulated Brownian motion.
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FIGURE 4.4: Interpolation of Brownian motion.

Packages and Further Reading

General references on discrete event simulation and simulation of stochastic
processes include Banks et al. [22], Devroye [72], and Fishman [98]. Algorithms
for generating random tours in general are discussed by Fishman [97, Ch. 5].
Also see Cornuejols and Titiinci [58] on related optimization methods.

Ross [251] has a nice introduction to Brownian Motion, starting with the
interpretation of Brownian Motion as the limit of random walks. For a more
theoretical treatment see Durrett [80, Ch. 7].

See Franklin [101] for simulation of Gaussian processes. Functions to simu-
late long memory time series processes, including fractional Brownian motion
are available in the R package fArma (function fbmSim) [322] and sde [153].
Also see Coeurjolly [56] for a bibliographical and comparative study on sim-
ulation and identification of fractional Brownian motion.

References on the general subject of methods for generating random vari-
ates from specified probability distributions have been given in Section 3.1.

Exercises

4.1 Suppose that A and B each start with a stake of $10, and bet $1 on
consecutive coin flips. The game ends when either one of the players
has all the money. Let S,, be the fortune of player A at time n. Then
{Sn,n > 0} is a symmetric random walk with absorbing barriers at 0
and 20. Simulate a realization of the process {S,,n > 0} and plot S,
vs. the time index from time 0 until a barrier is reached.

4.2 A compound Poisson process is a stochastic process {X(t),t > 0} that
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can be represented as the random sum X (t) = ZZN:(;) Y;, t > 0, where
{N(t),t > 0} is a Poisson process and Y7, Ys, ... are iid and independent
of {N(t),t > 0}. Write a program to simulate a compound Poisson(A)—
Gamma process (Y has a Gamma distribution). Estimate the mean and
the variance of X (10) for several choices of the parameters and compare
with the theoretical values. Hint: Show that E[X(t)] = AE[Y7] and
Var(X(t)) = \E[Y?].

A nonhomogeneous Poisson process has mean value function
m(t) =t* + 2t, t>0.

Determine the intensity function A(¢) of the process, and write a pro-
gram to simulate the process on the interval [4,5]. Compute the prob-
ability distribution of N(5) — N(4), and compare it to the empirical
estimate obtained by replicating the simulation.
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Chapter 5

Visualization of Multivariate Data

5.1 Introduction

The topic of visualization of multivariate data is related to more gen-
eral subjects called exploratory data analysis (EDA) and statistical graphics.
The term “exploratory” is in contrast to “confirmatory,” which could describe
hypothesis testing. Tukey [290] believed that it was important to do the ex-
ploratory work before hypothesis testing, to learn what are the appropriate
questions to ask, and the most appropriate methods to answer them. With
multivariate data, we may also be interested in dimension reduction or find-
ing structure or groups in the data. Here we restrict attention to methods for
visualizing multivariate data.

In this chapter several graphics functions are used. In addition to the R
graphics package, which loads when R is started, other packages discussed in
this chapter are the ggplot2 graphics package [313], lattice trellis graphics
package [257], and MASS (see [293]). Also see the rggobi [174] interface to
GGobi and rgl [2] package for interactive 3D visualization. Table 1.4 lists
some basic graphics functions in R (graphics) or other packages. Table 5.1
lists more 2D graphics functions and some of the 3D visualization methods.

Chapter 1 gives a brief summary of options for colors, plotting symbols,
and line types.

5.2 Panel Displays

A panel display is an array of two-dimensional graphical summaries of
pairs of variables in a multivariate dataset. For example, a scatterplot ma-
trix displays the scatterplots for all pairs of variables in an array. The pairs
function in the graphics package produces a scatterplot matrix, as shown in
Figures 5.1 and 5.2 in Example 5.1, and Figure 3.7. An example of a panel
display of three-dimensional plots is Figure 5.7.

115
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TABLE 5.1: Graphics Functions for Multivariate Data in R
(graphics) and Other Packages

Method in (graphics) in (package)

3D scatterplot cloud (lattice)
Matrix of scatterplots pairs splom (lattice)
Correlation plots corrplot (corrplot)
Bivariate density surface persp wireframe (lattice)
Contour plot contour, image contourplot (lattice)

contourLines  contour (MASS)
filled.contour  levelplot (lattice)
Parallel coord. plot parallelplot (lattice)
parcoord (MASS)

Star plot stars

Segment plot stars

Interactive 3D graphics (rggobi), (rgl)
ggplot geplot (ggplot2)

Example 5.1 (Scatterplot matrix). We compare the four variables in the
iris data for the species virginica, in a scatterplot matrix.

data(iris)
#virginica data in first 4 columns of the last 50 obs.
pairs(iris[101:150, 1:4])

In the plot produced by the pairs command above (not shown) the variable
names will appear along the diagonal. The pairs function takes an optional
argument diag.panel, which is a function that determines what is displayed
along the diagonal. For example, to obtain a graph with estimated density
curves along the diagonal, supply the name of a function to plot the densities.
The function below called panel.d plots the densities.

panel.d <- function(x, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(usr[1:2], 0, .5))
lines(density(x))
}

In panel.d, the graphics parameter usr specifies the extremes of the user co-
ordinates of the plotting region. Before plotting, we apply the scale function
to standardize each of the one-dimensional samples.

x <- scale(iris[101:150, 1:4])
r <- range(x)
pairs(x, diag.panel = panel.d, xlim = r, ylim = r)

The pairs plot is displayed in Figure 5.1. From the plot we can observe that
the length variables are positively correlated, and the width variables appear
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to be positively correlated. Other structure could be present in the data that
is not revealed by the bivariate marginal distributions.

The lattice package [257, 258] provides functions to construct panel dis-
plays. Here we illustrate the scatterplot matrix function splom in lattice.

library(lattice)
splom(iris[101:150, 1:4]) #plot 1

#for all 3 at once, in color, plot 2
splom(iris[,1:4], groups = iris$Species)

#for all 3 at once, black and white, plot 3
splom(~iris[1:4], groups = Species, data = iris,
col =1, pch = c(1, 2, 3), cex = c(.5,.5,.5))

The last plot (plot 3) is displayed in Figure 5.2. It is displayed here in black
and white, but on screen the panel display is easier to interpret when displayed
in color (plot 2). Also see the 3D scatterplot of the iris data in Figure 5.7. ©
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FIGURE 5.1: Scatterplot matrix (pairs) comparing four measurements of
iris virginica species in Example 5.1.

The ggplot2 package provides facet_wrap and facet_grid, so that many
of the lattice arrays or grids of plots can also be rendered with ggplot. (See
Example 1.14.) Although the topic is beyond the scope of this chapter, readers
who are interested in how to display a lattice plot using ggplot2 can find a
nearly comprehensive set of examples at https://learnr.wordpress.com/
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FIGURE 5.2: Scatterplot matrix comparing four measurements of iris data:
setosa (circle), versicolor (triangle), virginica (cross) from Example 5.1.

by searching for “Multivariate Data Visualization with R” (a 13-part tuto-
rial). For other types of panel displays, see the conditioning plots [45, 54, 55]
implemented in coplot.

5.3 Correlation Plots

When a data set has more than about four or five quantitative variables,
an array of scatter plots such as the plots produced by pairs or splom in
lattice is not helpful for visualizing pairwise association. A correlation matrix
can always be computed, but a large array of correlations is also difficult to
interpret. A graphical summary of pairwise correlations can be very useful in
this case.

The corrplot package [309] contains a function corrplot for the visual-
ization of a correlation matrix, along with a utility that allows for different
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orderings of the matrix. The corrplot function has many options for color,
shape, etc. that are controlled through several optional arguments.

Example 5.2 (Decathlon data). The decathlon data is provided in the Fac-
toMineR package [178]. To run the code of this example, first install the
corrplot and FactoMineR packages. The decathlon is a competition includ-
ing ten track and field events. The decathlon data includes the performance
of 41 athletes in the 2004 Olympic Game or 2004 Decastar, with the ranks
and points scored. Suppose that we are interested in the association between
athletes’ performance in the ten events. We compute a correlation matrix for
the ten event variables and then use corrplot to generate a plot to visualize
this matrix. From the structure function str one can see that the ten events
correspond to the first ten columns.

library(FactoMineR) #decathlon data
library(corrplot)

data("decathlon")

str(decathlon)

corrMat <- cor(decathlon[, 1:10])
corrplot(corrMat, type="upper", tl.col="black", tl.srt=45)

The correlation plot, shown in Figure 5.3 (see color insert), makes it easy
to identify large correlations by the size of the symbols. There are high cor-
relations between pairs of field events like shotput and discus, and between
pairs of shorter distance races and hurdles, for example, while the correlations
between pairs of a track event and a field event are small. The sign of the
correlation is mapped to the color of the symbol, so it is easy to observe that
the long jump is negatively correlated with the 400 meter run and 110 meter
hurdles.
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400m @ @ 0
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FIGURE 5.3: Correlation plot of athletes’ performance in the decathlon
events in Example 5.2.
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To display a similar plot with the correlation coefficients we removed the
diagonal, changed the method to "square" and used addCoef.col = black

for the coefficients.

corrplot(corrMat, type = "upper", method = "square",
addCoef.col = "black", diag=FALSE)

From the resulting plot in Figure 5.4 (see color insert), we have a similar
visualization but with the size of the symbol replaced by the value of the

coefficient.
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FIGURE 5.4: Correlation plot of athletes’ performance in the decathlon

events with correlation coeflicients, Example 5.2.

5.4 Surface Plots and 3D Scatter Plots

Several packages provide surface and contour plots. The persp

(graphics) function draws perspective plots of surfaces over the plane. Try
running the demo examples for persp, to see many interesting graphs. The
command is simply demo(persp). We will also look at 3D methods in the
lattice graphics package and the rgl package [2, 257, 293].
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5.4.1 Surface Plots

For certain graphs we need to mesh a grid of regularly spaced points in
the plane. The command for this is expand.grid. If we do not need to save
the x,y values, and only need the function values {z;; = f(z;,y;)}, the outer
function can be used.

Example 5.3 (Plot bivariate normal density). Plot the standard bivariate
normal density

[@,y) = o—e 3 (@) e R
27
Code to plot the bivariate standard normal density surface using the persp
function is below. Most of the parameters are optional; x, y, z are required.
For this function we need the complete grid of z values, but only one vector
of « and one vector of y values. In this example, z;; = f(x;,y;) are computed
by the outer function.

#the standard BVN density

f <- function(x,y) {
z <= (1/(2*pi)) * exp(-.5 * (x72 + y~2))
}

y <= x <- seq(-3, 3, length= 50)
z <- outer(x, y, f)  #compute density for all (x,y)

persp(x, y, z) #the default plot

persp(x, y, z, theta = 45, phi = 30, expand = 0.6,
ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "f(x, y)")

The second version of the perspective plot is shown in Figure 5.5. o

R Note 5.1

The outer function outer(x, y, f) in Example 5.3 applies the third
argument, a bivariate function, to the grid of (z,y) values. The re-
turned value is a matrix of function values for every point (z;,y;) in
the grid. Storing the grid was not necessary.

For a presentation, adding color (say, col = "lightblue") produces
a more attractive plot. The box can be suppressed by box = FALSE.

Adding elements to a perspective plot

The persp function returns the ‘viewing transformation’ in a 4 x 4 matrix.
This transformation can be used to add elements to the plot.
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FIGURE 5.5: Perspective plot of the standard bivariate normal density in
Example 5.3.

Example 5.4 (Add elements to perspective plot). This example uses the
viewing transformation returned by the perspective plot of the standard bi-
variate normal density to add points, lines, and text to the plot.

#store viewing transformation in M
persp(x, y, z, theta = 45, phi = 30,
expand = .4, box = FALSE) -> M

The transformation returned by the persp function call is

[,1] [,2] [,3] [,4]
[1,] 2.357023e-01 -0.1178511 0.2041241 -0.2041241
[2,] 2.357023e-01 0.1178511 -0.2041241 0.2041241
[3,] -2.184757e-16 4.3700078 2.5230252 -2.5230252
[4,] 1.732284e-17 -0.3464960 -2.9321004 3.9321004

This transformation M is applied to (z,y, z,t) to project points onto the screen
for display in the same coordinate system used to draw the perspective plot.

#add some points along a circle

a <- seq(-pi, pi, pi/16)

newpts <- cbind(cos(a), sin(a)) * 2
newpts <- cbind(newpts, 0, 1) #z=0, t=1
N <- newpts %*% M

points(N[,1]/N[,4], N[,2]/N[,4], col=2)

#add lines
x2 <- seq(-3, 3, .1)
y2 <- -x272 / 3
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z2 <- dnorm(x2) * dnorm(y2)
N <- cbind(x2, y2, z2, 1) %)% M
lines(N[,11/N[,4], N[,2]1/N[,4], col=4)

#add text

x3 <- c(0, 3.1)

y3 <- c(0, -3.1)

23 <- dnorm(x3) * dnorm(y3) * 1.1

N <- cbind(x3, y3, z3, 1) %*% M

text(N[1,1]/N[1,4], N[1,2]1/N[1,4], "f(x,y)")
text(N[2,1]/N[2,4], N[2,2]/N[2,4], bquote(y==-x"2/3))
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The plot with added elements is shown in Figure 5.6 (Note: R provides a
function trans3d to compute the coordinates above. Here we have shown the

calculations.)
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FIGURE 5.6: Perspective plot of the standard bivariate normal density with
elements added using the viewing transformation returned by persp in Ex-

ample 5.4.

Other functions for graphing surfaces

Surfaces can also be graphed using the wireframe (lattice) function
[257]. Supply a formula z ~ x * y and a data frame or data matrix containing

the points (x, y, z).

Example 5.5 (Surface plot using wireframe(lattice)). The following code
displays a surface plot of the bivariate normal density similar to Figure 5.5
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using wireframe (lattice). The wireframe function requires a formula z ~
x*y, where z = f(z,y) is the surface to be plotted. The syntax for wireframe
requires that x, y and z have the same number of rows. We can generate the
matrix of (z,y) coordinates using expand.grid.

library(lattice)
x <- y <- seq(-3, 3, length= 50)

xy <- expand.grid(x, y)
z <= (1/(2*pi)) * exp(-.5 * (xy[,11°2 + xy[,21°2))
wireframe(z ~ xy[,1] * xy[,2])

The wireframe plot (not shown) looks very similar to the perspective plot of
the bivariate normal density in Figure 5.5. o

An interactive 3D display is provided by the graphics package rgl [2]. If
the rgl package is installed, run the demo. One of the examples in the demo
shows a bivariate normal density. (Actually, the data used to plot the surface
in this demo is generated by smoothing simulated bivariate normal data.)

library(rgl)
demo(bivar)  #or demo(rgl) to see more

It may be helpful to enlarge the graph window. The graph can be rotated and
tilted by the mouse to see the surface from different angles. For the source
code of this demo, refer to the file ./demo/bivar.r in the directory where rgl
is installed.

Chapter 12 gives examples of methods to construct and plot density esti-
mates for bivariate data. See, e.g., Figures 12.11, 12.12(a), and 12.13.

5.4.2 Three-dimensional Scatterplot

The cloud (lattice) [257] function produces 3D scatterplots. A possible
application of this type of plot is to explore whether there are groups or
clusters in the data. To apply the cloud function, provide a formula z ~ z xy,
where z = f(x,y) is the surface to be plotted. The first part of the following
example is a simple application of cloud with groups identified by color. The
second part of the example illustrates several options.

Example 5.6 (3D scatterplot). This example uses the cloud function in
the lattice package to display a 3D scatterplot of the iris data. There are
three species of iris and each is measured on four variables. The following code
produces a 3D scatterplot of sepal length, sepal width, and petal length. The
plot produced is similar to (3) in Figure 5.7.

library(lattice)

attach(iris)

#basic 3 color plot with arrows along axes

print(cloud(Petal.Length ~ Sepal.Length * Sepal.Width,
data=iris, groups=Species))
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The iris data has four variables, so there are four subsets of three variables
to graph. To see all four plots on the screen, use the more and split options.
The split arguments determine the location of the plot within the panel
display.

print (cloud(Sepal.Length ~ Petal.Length * Petal.Width,
data = iris, groups = Species, main = "1", pch=1:3,
scales = list(draw = FALSE), zlab = "SL",
screen = list(z = 30, x = =75, y = 0)),
split = c(1, 1, 2, 2), more = TRUE)

print (cloud(Sepal.Width ~ Petal.Length * Petal.Width,
data = iris, groups = Species, main = "2", pch=1:3,
scales = list(draw = FALSE), zlab = "SW",
screen = list(z = 30, x = =75, y = 0)),
split = c(2, 1, 2, 2), more = TRUE)

print (cloud(Petal.Length ~ Sepal.Length * Sepal.Width,
data = iris, groups = Species, main = "3", pch=1:3,
scales = list(draw = FALSE), zlab = "PL",
screen = list(z = 30, x = =65, y = 0)),
split = c(1, 2, 2, 2), more = TRUE)

print (cloud(Petal.Width ~ Sepal.Length * Sepal.Width,
data = iris, groups = Species, main = "4", pch=1:3,
scales = list(draw = FALSE), zlab = "PW",
screen = list(z = 30, x = =65, y = 0)),
split = c(2, 2, 2, 2))

detach(iris)

The four 3D scatterplots are shown in Figure 5.7. The plots show that
the three species of iris are separated into groups or clusters in the three-
dimensional subspaces spanned by any three of the four variables. There is
some structure evident in these plots. One might follow up with cluster anal-
ysis or principal components analysis to analyze the apparent structure in the
data. o

R Note 5.2

Syntax for cloud: The screen option sets the orientation of the axes.
Setting draw = FALSE suppresses arrows and tick marks on the axes.
Syntax for print(cloud): To split the screen into n rows and m
columns, and put the plot into position (r,c), set split equal to the
vector (r,c,n,m). One unusual feature of cloud is that unlike most
graphics functions in R, cloud does not plot a panel figure unless we
print it. See print.trellis for documentation on the print method
for cloud.
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FIGURE 5.7: 3D scatterplots of iris data produced by cloud (lattice) in
Example 5.6, with each species represented by a different plotting character.

5.5 Contour Plots

A contour plot represents a 3D surface (z,y, f(x,y)) in the plane by pro-
jecting the level curves f(x,y) = c for selected constants c¢. The functions
contour (graphics) and contourplot (lattice) [257] produce contour
plots. The functions filled.contour in the graphics package and levelplot
function in the lattice package produce filled contour plots. Both contour
and contourplot label the contours by default. A variation of this type of
plot is image (graphics), which uses color to identify contour levels.

Example 5.7 (Contour plot). A good example is provided in R using the
volcano data. Information about this data is in the help file for volcano.
The data is an 87 by 61 matrix containing topographic information for the
Maunga Whau volcano.

#contour plot with labels
contour(volcano, asp = 1, labcex = 1)

#another version from lattice package
library(lattice)
contourplot(volcano) #similar to above
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Figure 5.8(a) shows the contour plot of the volcano data produced by the
contour function.

It may also be interesting to see the 3D surface of the volcano for com-
parison with the contour plots. A 3D view of the volcano surface is provided
in the examples of the persp function. The R code for the example is in the
persp help page. To run the example, type example (persp).

If the rgl package is installed, an interactive 3D view of the volcano ap-
pears in the examples. When the volcano surface is displayed, use the mouse
to rotate and tilt the surface, to view it from different angles.

library(rgl)
example (rgl)

Yet another 3D view of the volcano data, with shading to indicate contour
levels, appears in the examples of the wireframe function in the lattice
package. See the first example in the wireframe help file. o

(a) (b)

FIGURE 5.8: Contour plot and levelplot of volcano data in Examples 5.7
and 5.8.

Example 5.8 (Filled contour plots). A contour plot with a 3D effect could be
displayed in 2D by overlaying the contour lines on a color map corresponding
to the height. The image function in the graphics package provides the color
background for the plot. The plot produced below is similar to Figure 5.8(a),
with the background of the plot in terrain colors.

image(volcano, col = terrain.colors(100), axes = FALSE)
contour(volcano, levels = seq(100,200,by = 10), add = TRUE)

Using image without contour produces essentially the same type of plot as
filled.contour (graphics) and levelplot (lattice). The contours of
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filled.contour and levelplot are identified by a legend rather than super-
imposing the contour lines. Compare the plot produced by image with the
following two plots.

filled.contour(volcano, color = terrain.colors, asp = 1)
levelplot(volcano, scales = list(draw = FALSE),
Xlab = llll, ylab = I||l)

The plot produced by levelplot is shown in Figure 5.8(b). (The display on
the screen will be in color.) o

A limitation of 2D scatterplots is that for large data sets, there are often
regions where data is very dense, and regions where data is quite sparse.
In this case, the 2D scatterplot does not reveal much information about the
bivariate density. Another approach is to produce a 2D or flat histogram, with
the density estimate in each bin represented by an appropriate color.

Example 5.9 (2D histogram). In this example, simulated bivariate normal
data is displayed in a flat histogram with hexagonal bins. The hexbin function
in package hexbin [39] (available from Bioconductor repository) produces a
basic version of this plot in grayscale, shown in Figure 5.9.

library(hexbin)
x <- matrix(rnorm(4000), 2000, 2)
plot (hexbin(x[,11, x[,2]))

Compare the flat density histogram in Figure 5.9 with the bivariate histogram
in Figure 12.11. Note that the darker colors correspond to the regions where
the density is highest, and colors are increasingly lighter along radial lines
extending from the mode near the origin. The plot exhibits approximately
circular symmetry, consistent with the standard bivariate normal density.

The bivariate histogram can also be displayed in 2D using a color palette,
such as heat.colors or terrain.colors, to represent the density for each
bin.

A ggplot version of the hexbin 2D histogram can be displayed using
geom_hex. The first argument to ggplot must be a data frame.

library(ggplot2)
x <- data.frame(x)
ggplot(x, aes(x[,1], x[,2])) + geom_hex()

The resulting figure (not shown) is very similar to Figure 12.11, but in color.

A similar type of plot is implemented in the gplots package [305]. The
plot (not shown) resulting from the following code is similar to Figure 5.9,
but with color and square bins.

library(gplots)
hist2d(x, nbins = 30,
col = c("white", rev(terrain.colors(30))))
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FIGURE 5.9: Flat density histogram of bivariate normal data with hexag-
onal bins produced by hexbin in Example 5.9.

5.6 Other 2D Representations of Data

In addition to contour plots and other projections of data into two dimen-
sions, there are several other methods for representing multivariate data in
two dimensions. These include, among others, Andrews curves, parallel coor-
dinate plots, and various iconographic displays such as segment plots and star
plots.

5.6.1 Andrews Curves

If X1,...,X, € R? one approach to visualizing the data in two dimen-
sions is to map each of the sample data vectors onto a real valued function.
Andrews Curves [16] map each sample observation z; = x;1,...,2;q to the
function

7
fit) = \/—Z% + X0 sint + i3 cost + T4 8N 2t + 145 cos 2t + . ..
L1 .
= \b + Z T 2k SIN kt + Z T 2k+1 COS kt, —nm <t<m.
1<k<d/2 1<k<d/2

Thus, each observation is represented by its projection onto a set of orthog-
onal basis functions {271/2, {sin kt}32 |, {cos kt}32; }. Notice that differences
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between measurements are amplified more in the lower frequency terms, so
that the representation depends on the order of the variables or features.

Example 5.10 (Andrews curves). In this example, measurements of leaves
taken at N. Queensland, Australia for two types of leaf architecture [167] are
represented by Andrews curves. The data set is leafshapel7 in the DAAG
package [189, 190]. Three measurements (leaf length, petiole, and leaf width)
correspond to points in R3. It is easiest to interpret the plots if leaf architec-
tures are identified by different colors, but here we use different line types. To
plot the curves, define a function to compute f;(¢) for arbitrary points x; in
R3 and —7 < t < 7. Evaluate the function along the interval [—, 7] for each
sample point z;.

library (DAAG)
attach(leafshapel?)

f <- function(a, v) {
#Andrews curve f(a) for a data vector v in R™3
v[11/sqrt(2) + v[2]*sin(a) + v[3]*cos(a)

}

#scale data to range [-1, 1]

x <- cbind(bladelen, petiole, bladewid)

n <- nrow(x)

mins <- apply(x, 2, min) #column minimums
maxs <- apply(x, 2, max) #column maximums

r <- maxs - mins #column ranges

y <- sweep(x, 2, mins) #subtract column mins
y <- sweep(y, 2, r, "/") #divide by range
x<-2x*xy-1 #now has range [-1, 1]

#set up plot window, but plot nothing yet
plot(0, 0, xlim = c(-pi, pi), ylim = c(-3,3),
xlab = "t", ylab = "Andrews Curves",

main = "", type = "n")

#now add the Andrews curves for each observation
#line type corresponds to leaf architecture
#0=orthotropic, 1=plagiotropic
a <- seq(-pi, pi, len=101)
dim(a) <- length(a)
for (i in 1:n) {
g <- arch[i] + 1
y <- apply(a, MARGIN = 1, FUN = f, v = x[1i,])
lines(a, y, 1ty = g)

}
legend (3, c("Orthotropic", "Plagiotropic"), lty = 1:2)
detach(leafshapel7)

The plot of Andrews curves for this example is shown in Figure 5.10. The
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plot reveals similarities within plagiotropic and orthotropic leaf architecture
groups, and differences between these groups. In general, this type of plot may
reveal possible clustering of data. o

R Note 5.3

In Example 5.10 the sweep operator is applied to subtract the column
minimums above. The syntax is

sweep(x, MARGIN, STATS, FUN="-", ...)

By default, the statistic is subtracted but other operations are possible.
Here

y <- sweep(x, 2, mins) #subtract column mins
y <- sweep(y, 2, r, "/") #divide by range

sweeps out (subtracts) the minimum of each column (margin = 2).
Then the ranges of each of the three columns (in r) are swept out; that

is, each column is divided by its range. o
o
—— Orthotropic
- - - Plagiotropic
N -

Andrews Curves
0
|

FIGURE 5.10: Andrews curves for leafshapel7 (DAAG) data at latitude
17.1: leaf length, width, and petiole measurements in Example 5.10. Curves
are identified by leaf architecture.
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R Note 5.4

In Figure 5.10 to identify the curves by color, replace 1ty with col
parameters in the lines and legend statements. o

5.6.2 Parallel Coordinate Plots

Parallel coordinate plots provide another approach to visualization of mul-
tivariate data. The representation of vectors by parallel coordinates was in-
troduced by Inselberg [156] and applied for data analysis by Wegman [307].
Rather than represent axes as orthogonal, the parallel coordinate system rep-
resents axes as equidistant parallel lines. Usually these lines are horizontal
with common origin, scale, and orientation. Then to represent vectors in R¢,
the parallel coordinates are simply the coordinates along the d copies of the
real line. Each coordinate of a vector is then plotted along its corresponding
axis, and the points are joined together with line segments.

Parallel coordinate plots are implemented by the parcoord function in the
MASS package [293] and the parallel function in the lattice package [257].
The parcoord function displays the axes as vertical lines. The panel function
parallel displays the axes as horizontal lines.

Example 5.11 (Parallel coordinates). This example illustrates using the
parallel (lattice) function to construct a panel display of parallel co-
ordinate plots for the crabs (MASS) data [293]. The crabs data frame has 5
measurements on each of 200 crabs, from four groups of size 50. The groups
are identified by species (blue or orange) and sex. The graph is best viewed
in color. Here we use black and white, and for readability select only 1/5 of
the data.

library (MASS)

library(lattice)

#trellis.device(color = FALSE) #black and white display
x <- crabs[seq(5, 200, 5), ] #get every fifth obs.
parallelplot(~x[4:8] | sp*sex, x)

The resulting parallel coordinate plots are displayed in Figure 5.11(a). The
labels along the vertical axis identify each axis corresponding to the five mea-
surements (frontal lobe size, rear width, carapace length, carapace width, body
depth). Much of the variability between groups is in overall size.

Adjusting the measurements of individual crabs for size may produce more
interesting plots. Following the suggestion in Venables and Ripley [293], we
adjust the measurements by the area of the carapace.

#trellis.device(color = FALSE) #black and white display
x <- crabs[seq(5, 200, 5), ] #get every fifth obs.
a <- x$CW * x$CL #area of carapace
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x[4:8] <- x[4:8] / sqrt(a) #adjust for size
parallelplot(~x[4:8] | sp*sex, x)

In the resulting plot in Figure 5.11(b), differences in species and sex are much
more evident after adjustment than in Figure 5.11(a). o

Min Max
I

FIGURE 5.11: Parallel coordinate plots in Example 5.11 for a subset of the
crabs (MASS) data. (a) Differences between species (B=blue, O=orange) and
sex (M, F) are largely obscured by large variation in overall size. (b) After
adjusting the measurements for size of individual crabs, differences between
groups are evident.

5.6.3 Segments, Stars, and Other Representations

Multivariate data can be represented by a two-dimensional icon or glyph,
such as a star. The Andrews curves in Example 5.10 are an example; the
curves are the two-dimensional symbols. Andrews curves were displayed su-
perimposed on the same coordinate system. Other representations as icons are
best displayed in a table, so that features of observations can be compared.
A tabular display does not have much practical value for high dimension or
large data sets, but can be useful for some small data sets. Some examples
include star plots and segment plots. This type of plot is easily obtained in R
using the stars (graphics) function.

Example 5.12 (Segment plot). This example uses the subset of crabs
(MASS) data from Example 5.11. As in Example 5.11, individual measure-
ments are adjusted for overall size by area of carapace.

#segment plot
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x <- MASS::crabs[seq(5, 200, 5), ] #get every fifth obs.
x <- subset(x, sex == "M") #keep just the males

a <- x$CW * x$CL #area of carapace

x[4:8] <- x[4:8] / sqrt(a) #adjust for size

#use default color palette or other colors
#palette(gray(seq(.4, .95, len = 5))) #use gray scale
palette(rainbow(6)) #or use color
stars(x[4:8], draw.segments = TRUE,

labels =levels(x$sp), nrow = 4,

ylim = c(-2,10), key.loc = c(3,-1))

#after viewing, restore the default colors
palette("default")

The plot is shown in Figure 5.12. The observations are labeled by species. The
differences between the species (for males) in this sample are quite evident in
the plot. The plot suggests, for example, that orange crabs have greater body
depth relative to carapace width than blue crabs. o
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FIGURE 5.12: Segment plot of a subset of the males in the crabs (MASS)
data set in Example 5.12. The measurements have been adjusted by overall
size of the individual crab. The two species are blue (B) and orange (O).
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5.7 Principal Components Analysis

Principal components analysis (PCA) refers to a dimension reduction
method. A data set may have a large number of correlated variables, and
PCA is a method that provides an approximate representation in a lower
dimensional space. In this section, we review how PCA is used to help visu-
alize and explore multivariate data. It has many other applications, such as
principal components regression, in supervised learning, and in unsupervised
learning.

Principal components analysis for multivariate visualization uses projec-
tions (see, e.g., [194, Ch. 8] and [293, Sec. 11.1]). When the data are projected
onto the eigenvector corresponding to the maximal eigenvalue of the covari-
ance matrix, this first principal component is in the direction that explains
the most variation in the data. Dimension is reduced by projecting onto a
small number of the principal components that collectively explain most of
the variation.

Suppose that X = (Xi,...,X,)T is a random vector with E[X] = p and
covariance matrix 3. We have seen that some projections or views of mul-
tidimensional data are more interesting than others. The more interesting
rotations correspond to linear transformations that maximize variance. Prin-
cipal components analysis finds an optimal rotation such that the variance in
the direction of the first coordinate is maximized. This is the first principal
component Z;. Among all directions orthogonal to the first, the second prin-
cipal component Z5 has maximal variance. In this way a set of p principal
components (PCs) are found, and we have a linear transformation of X to Z,
where the components of Z are uncorrelated. When most of the variance of X
is captured by Z1,. .., Zy for some k < p, the reduced set (Z1,...,Z;)T € RF
is an approximate representation of X € R? in the lower dimensional space
Rk,

Consider linear transformations of the form Y = w? (X — p), where w’ =
(wi,...,wp) and |Jw|| = 1. We seek w such that Var(Y') is maximized.

The covariance matrix Y is symmetric, and it admits a spectral decompo-
sition as ¥ = PAPT, where P is the p x p matrix of standardized eigenvectors
of ¥, and A is the diagonal matrix with eigenvalues A\; > Ay > .- > X, >0
along the diagonal. Let v; be the normalized eigenvector corresponding to the
maximal eigenvalue A;. The first PC is Z; = v1(X — p). Then Var(Z;) = Ay,
and it can be shown that no linear combination y = w”? (z — p) (J|w|| = 1) has
a larger variance than Z; (see, e.g., [194, Theorem 8.2.2]).

At step k + 1, consider all linear combinations Y = w? (X — u), |w| = 1,
such that Y is uncorrelated with principal components 7, ..., Z; determined
up to step k. Then ([194, Theorem 8.2.3]) Var(Y) is maximized when ¥V =
L1 = Ug+1(X —u), k=2,3,...,p—1. Thus, the i*" principal component is

Zi = vl (X — ), 1=1,2,...,p,
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where vy, ..., v, are the standardized eigenvectors of Cov(X).
The set of principal components {Z1,. .., Z,} satisfy

1. Var(Z)) =X i, i =1,...,p;
2. Var(Z1) > Var(Zs) > --- > Var(Z,) > 0;
3. Cor(Z;,Z;) =0,1# j.
It follows that for any k < p, the first kK PCs {Z1,..., Zx}, k < p capture

Z?:l Var(Z;) B Zi‘c:l Ai
5'):1 Var(Z;) Z?:l Aj

of Var(X). The coordinates of the eigenvectors v; are called the loadings.

Principal components are not scale invariant. If the data measurements are
on different scales, then the data should be scaled to have common variance
before computing the PCs.

Sample principal components are computed by the same method, substi-
tuting the sample mean vector X for 1 and a sample covariance matrix for X.
Two estimators for 3 are commonly applied; the maximum likelihood estima-
tor i which divides the sums by sample size n, and the unbiased estimator
S, which divides the sums by n — 1. Software implementing PCA, including
the two methods princomp and prcomp available in R stats, may use different
estimators of 3.

Example 5.13 (PCA for open and closed book exams). The scor (bootstrap)
data (discussed in [194]) has exam scores in five subjects: mechanics, vectors,
algebra, analysis, and statistics, for 88 students. Mechanics and vectors were
closed book, and the other three examinations were open book.

As a first step in the data analysis we might look at pairwise scatter plots
and the pairwise correlations between the variables. It is clear that several
of the variables are highly correlated. With PCA we can compute derived
variables that summarize the data in another coordinate system using un-
correlated variables, possibly capturing most of the relationships in two or
three components. One might investigate whether the first two principal com-
ponents are an adequate representation of the data in two dimensions, and
apply the result for better visualization of the data.

library(bootstrap)
str(scor)
pairs(scor)

> cor(scor)

mec vec alg ana sta
mec 1.0000000 0.5534052 0.5467511 0.4093920 0.3890993
vec 0.5534052 1.0000000 0.6096447 0.4850813 0.4364487
alg 0.5467511 0.6096447 1.0000000 0.7108059 0.6647357
ana 0.4093920 0.4850813 0.7108059 1.0000000 0.6071743
sta 0.3890993 0.4364487 0.6647357 0.6071743 1.0000000
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The details that follow illustrate the linear algebra computations needed
to derive the principal components. Then we compare these results with the
prcomp function on the same data.

The first step in the PCA is to compute the spectral decomposition of the
covariance matrix of the centered and scaled data to get the eigenvalues and
eigenvectors.

<- nrow(scor)
scale(scor) #center and scale
<- cov(x)
<- eigen(s)
lam <- e$values #vector of eigenvalues
P <- e$vectors #matrix of eigenvectors

o n XK B
A
|

A screeplot helps to determine how many principal components account
for most of the variance. Two versions, a line plot and a barplot are given
below. The line plot is shown in Figure 5.13. The proportion of variance and
the cumulative proportion of variance explained for each principal component
is summarized in the table. Compare the cumulative proportions with the
plot; the plot of eigenvalues flattens out when the percentage is close to 90%.
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0.5
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FIGURE 5.13: Screeplot (eigenvalues) for the scor data in 5.13.

plot(lam, type = "b", xlab = "eigenvalues", main = "")
barplot(lam, xlab = "eigenvalues")

tab <- rbind(lam / sum(lam), cumsum(lam) / sum(lam))

> tab

[,1] [,2] [,3] [,4] [,5]
[1,] 0.636196 0.1479144 0.08899303 0.07757848 0.0493181
[2,] 0.636196 0.7841104 0.87310342 0.95068190 1.0000000

The plots and the table suggest that three PCs may give an adequate
representation of the data. For two PCs about 78% of the total variance is
captured, which increases to 87% for three PCs.
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To translate the equations Z; = v{ (X — X) into matrix form, suppose that
X is the centered and scaled data matrix and P is the matrix of standardized
eigenvectors of Cov(X). Then Z = X P.

## x is already centered and scaled above
z <- x /*h P

> dim(z)
[1] 88 5
> head(z)

[,11 [,2] [,3] [,4] [,5]
1 -4.285041 0.67410225 0.1235891 0.7931108 -0.51438033
2 -4.541989 -0.21331176 -0.2317797 0.5516063 0.59618974
3 -4.102690 0.27557530 0.5304377 0.6096862 -0.02781595
4 -3.026846 -0.14916207 -0.3702154 0.1595890 -0.43950477
5 -2.882081 -0.04408014 0.2988861 -0.3225740 -0.14767795
6 -2.988775 -0.68126196 0.2628756 0.2950331 0.54754485

The top of the Z matrix is shown above. The five columns are the five principal
components for the first six observations.

R provides functions princomp and prcomp that compute principal com-
ponents. The loadings are returned in the rotation component of prcomp or
the loadings component of princomp.

pc <- prcomp(scor, center = TRUE, scale = TRUE)

> summary (pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.7835 0.8600 0.66706 0.62281 0.49658
Proportion of Variance 0.6362 0.1479 0.08899 0.07758 0.04932
Cumulative Proportion 0.6362 0.7841 0.87310 0.95068 1.00000

In the summary table for the prcomp result, the proportion of variance
explained by each PC, as well as the cumulative proportions, match our table
computed from the eigenvalues.

The predict method is applied below to the first five exam scores. The
result is the same as the first five rows of the PC matrix z computed above.

> df <- scor[1:5, ]
> predict(pc, newdata = df) #same as z above

PC1 PC2 PC3 PC4 PC5
-4.285041 -0.67410225 0.1235891 0.7931108 -0.51438033
-4.541989 0.21331176 -0.2317797 0.5516063 0.59618974
-4.102690 -0.27557530 0.5304377 0.6096862 -0.02781595
-3.026846 0.14916207 -0.3702154 0.1595890 -0.43950477
-2.882081 0.04408014 0.2988861 -0.3225740 -0.14767795

O W N

The predictions can also be found from prcomp using the rotation com-
ponent.
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> head(x %*J, pc$rotation, 5)

PC1 PC2 PC3 PC4 PC5
-4.285041 -0.67410225 0.1235891 0.7931108 -0.51438033
-4.541989 0.21331176 -0.2317797 0.5516063 0.59618974
-4.102690 -0.27557530 0.5304377 0.6096862 -0.02781595
-3.026846 0.14916207 -0.3702154 0.1595890 -0.43950477
-2.882081 0.04408014 0.2988861 -0.3225740 -0.14767795

GO W N

Compare the eigenvectors P and the principal components rotation matrix.
They are identical except for a possible difference in sign of eigenvectors and
PCs, because the eigenvectors of a covariance matrix are only unique up to
their sign.

head (P)
head (pc$rotation)

See the following example for further discussion. o

Example 5.14 (PC Biplot). The biplot method for a prcomp or princomp
object is a plot of the data in the coordinate system of the first two PCs. This
type of plot can be helpful for visualization of the data in a low-dimensional
space and for interpretation of the components. The biplot method is generic,
and a PC biplot is not the default. To get a PC biplot, specify pc.biplot =
TRUE. The following continues Example 5.13.

## plot scor data in the (PC1, PC2) coordinate system
biplot(pc, pc.biplot = TRUE)

The biplot provides a new view of the five-dimensional scor data in the
(Z1, Z3) plane. Compare the labeled points in the biplot with Zj/\/)\ij to
understand the plot.

From the biplot in Figure 5.14, a few insights are apparent. The red algebra
vector has almost zero slope with respect to the second PC; this shows that
algebra is only lightly weighted in PC2. We can also observe that statistics and
analysis scores have a positive weight on PC2, while mechanics and vectors
have a negative weight in the PC2 direction. This is confirmed in the rotation
matrix, by looking at the signs in the first two columns. Also notice that
algebra has its highest loading on PC5.

The PCA can also be interpreted by looking at a table of correlations of
the PCs with the original variables.

> round(cor(x, z), 3)

[,1] [,2] [,3] [,4] [,5]
mec -0.713 0.555 0.414 -0.091 -0.065
vec -0.769 0.380 -0.470 0.186 -0.090
alg -0.898 -0.111 -0.025 -0.068 0.420
ana -0.815 -0.334 -0.091 -0.415 -0.210
sta -0.782 -0.405 0.208 0.410 -0.116
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The correlation table shows the variables that have strong correlations with
both PC1 and PC2 are mec and sta, even though all five of them have strong
correlation with PC1. PC5 represents less than 5% of the total variance; it is
primarily weighted on the algebra scores.

The closed book exams were mechanics and vectors. The first two PCs
weight them both positive, but weight the open book exams with opposite
signs. The opposite is true in the correlation table. o

sta
~ - ana

FIGURE 5.14: Principal components biplot for the scor data in 5.14.

Example 5.15 (Decathlon data). Refer to the decathlon data (FactoMineR
package, [178]) introduced in Example 5.2. Based on the correlation plots,
we might expect that a principal components analysis may reflect association
between groups of track events and groups of field events. The performance
measurements vary in scale, so we want to use the correlation matrix rather
than the covariance matrix for the PCA.

library(FactoMineR)

data(decathlon)

pc <- princomp(decathlon[,1:10], cor = TRUE, scores = TRUE)
plot(pc) # screeplot

biplot (pc)

The summary below shows that nearly 75% of the variance is explained by
the first four principal components and the screeplot of the eigenvalues (not
shown) suggests that four to six PCs capture most of the variance. The biplot
is shown in Figure 5.15.

> summary (pc)
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Importance of components:

Comp.1 Comp.2 Comp.3
Standard deviation 1.8088409 1.3180027 1.1852918
Proportion of Variance 0.3271906 0.1737131 0.1404917
Cumulative Proportion 0.3271906 0.5009037 0.6413953

Comp .4 Comp.5 Comp.6
Standard deviation 1.0280323 0.82751044 0.77412446
Proportion of Variance 0.1056850 0.06847735 0.05992687
Cumulative Proportion 0.7470804 0.81555771 0.87548458

Although several of the labels are overplotted in Figure 5.15, one can
observe that the axes for field events shotput, discus, javelin and high jump
are in approximately the same direction, and nearly orthogonal to the long
jump. The sprint events (100 m, 110 m hurdles) are nearly the same direction
and length, and also nearly orthogonal to the field events. This information is
consistent with what we observed from the correlation plots in Example 5.2.
o

5.8 Other Approaches to Data Visualization

Many other methods for data visualization are in the literature and we
mention here only a few more. Asimov’s grand tour [19] is an interactive
graphical tool that projects data onto a plane, rotating through all angles to
reveal any structure in the data. The tourr package [316] implements several
types of tours. The grand tour is similar to projection pursuit exploratory
data analysis (PPEDA) (Friedman and Tukey [103]). In both cases, structure
might be defined as departure from normality. Once the structure is removed,
the search can be repeated until no significant structure remains. Pattern
recognition and data mining are two broad areas of research that use some
visualization methods. See Ripley [235] or Duda et al. [78].

The FactoMineR package [178] features tools specifically for multivari-
ate exploratory data analysis and visualization, including principal compo-
nent analysis, correspondence analysis, multiple correspondence analysis and
multiple factor analysis. An interesting collection of topics on data mining
and data visualization is found in Rao, Wegman, and Solka [233]. For an
excellent resource on visualization of categorical data see Friendly [105] and
http://www.math.yorku.ca/SCS/vcd/.

In addition to the R functions and packages mentioned in this chapter,
several methods are available in other packages. Again, here we only name a
few. The latticeExtra package [259] extends the lattice package. Mosaic
plots for visualization of categorical data are available in mosaicplot. Also
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FIGURE 5.15: Principal components biplot for the decathlon data in 5.15.

see the package vecd [208] for visualization of categorical data. Chernofl’s faces
[51] are implemented in faces (aplpack) [321] and in faces(TeachingDemos)
[269]. Many packages for R fall under the data mining or machine learning
umbrella; for a start see nnet [293], rpart [283], and randomForest [184].
More packages are described on the Multivariate Task View and Machine
Learning Task View on the CRAN web.

The rggobi [174] package provides a command-line interface to GGobi,
which is an open-source visualization program for exploring high-dimensional
data. GGobi has a graphical user interface, providing dynamic and interactive
graphics. The GGobi software can be obtained from http://www.ggobi.org/
downloads/. Readers are referred to documentation and examples at http:
//wwu.ggobi.org/rggobi and the book by Cook and Swayne [57] featuring
examples using R and GGobi.

The tourr package [316] implements tour methods for visualization of
multivariate data.


http://www.ggobi.org
http://www.ggobi.org
http://www.ggobi.org
http://www.ggobi.org

Visualization of Multivariate Data 143

5.9 Additional Resources

Chang’s R Graphics Cookbook and gcookbook package [46, 47] is a good
resource for users who would like examples showing how R graphics can be
converted to ggplot [313] graphics. Murrell [214] covers traditional graphics
in R, grid graphics, lattice graphics, and ggplot2. More extensive docu-
mentation is provided in Wickham [313] for ggplot2 and in Sarkar [258] for
lattice.

There are several graphics galleries and resources available online that
illustrate interesting graphics with R code, featuring graphics of varying style
and complexity. See, for example:

e General collections using R graphics and other packages

http://rgraphgallery.blogspot.com/

— http://www.r-graph-gallery.com/
http://scs.math.yorku.ca/index.php/R_Graphs_Gallery
— http://shinyapps.stat.ubc.ca/r-graph-catalog/

e Graphics using ggplot2 or lattice packages or their extensions

http://www.cookbook-r.com/Graphs/

— http://www.ggplot2-exts.org/gallery/
http://r-statistics.co/
Top50-Ggplot2-Visualizations-MasterList-R-Code.html
https://plot.ly/ggplot2/

— http://latticeextra.r-forge.r-project.org/

Exercises

5.1 Generate 200 random observations from the multivariate normal distri-
bution having mean vector x4 = (0,1, 2) and covariance matrix

1.0 — 05 0.5
Y= — 05 1.0 — 05
0.5 — 0.5 1.0

Construct a scatterplot matrix and verify that the location and cor-
relation for each plot agrees with the parameters of the corresponding
bivariate distributions.

5.2 Add a fitted smooth curve to each of the scatterplots in Figure 5.1 of
Example 5.1. (?panel.smooth)


http://www.Top50-Ggplot2-Visualizations-MasterList-R-Code.html
http://latticeextra.r-forge.r-project.org
https://plot.ly
http://r-statistics.co
http://www.ggplot2-exts.org
http://www.cookbook-r.com
http://shinyapps.stat.ubc.ca
http://scs.math.yorku.ca
http://www.r-graph-gallery.com
http://rgraphgallery.blogspot.com
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The random variables X and Y are independent and identically dis-
tributed with normal mixture distributions. The components of the mix-
ture have N(0,1) and N (3, 1) distributions with mixing probabilities p;
and py = 1 —p1, respectively. Generate a bivariate random sample from
the joint distribution of (X,Y") and construct a contour plot. Adjust
the levels of the contours so that the contours of the second mode are
visible.

Construct a filled contour plot of the bivariate mixture in Exercise 5.3.
Construct a surface plot of the bivariate mixture in Exercise 5.3.

Repeat Exercise 5.3 for various different choices of the parameters of the
mixture model, and compare the distributions through contour plots.

Create a parallel coordinates plot of the crabs (MASS) [293] data using
all 200 observations. Compare the plots before and after adjusting the
measurements by the size of the crab. Interpret the resulting plots.

Create a plot of Andrews curves for the leafshapel7 (DAAG) [190]
data, using the logarithms of measurements (logwid, logpet, loglen).
Set line type to identify leaf architecture as in Example 5.10. Compare
with the plot in Figure 5.10.

Refer to the full leafshape (DAAG) data set. Produce Andrews curves
for each of the six locations. Split the screen into six plotting areas, and
display all six plots on one screen. Set line type or color to identify leaf
architecture. Do the plots suggest differences in leaf shape by location?

Generalize the function in Example 5.10 to return the Andrews curve
function for vectors in R?, where the dimension d > 2 is arbitrary. Test
this function by producing Andrews curves for the iris data (d = 4)
and crabs (MASS) data (d = 5).

Refer to the full 1eafshape (DAAG) data set. Display a segment style
stars plot for leaf measurements at latitude 42 (Tasmania). Repeat using
the logarithms of the measurements.

This exercise concerns understanding the transformation applied in
principal components analysis as displayed in the biplot. Refer to the
PCA example on the scor data (Examples 5.13-5.14). The PCA biplot
plots the transformed sample in the coordinates of the first two PCs.
The linear transformation is given by the rotation matrix (the eigenvec-
tors of the sample covariance matrix) so the PCs are Z = X R where
X is the (standardized) data matrix, and R is the rotation matrix re-
turned by prcomp. The coordinates are then scaled to unit variance for
plotting; that is Z; — Z;/ \/x . We can write the transformation for the
biplot in matrix form as X RA~'/2, where A~'/2 is the diagonal matrix
with {y/1/A1,...,1/1/),} along the diagonal. The diagonal of A1/2 is
returned by prcomp in component sdev. Apply the linear transforma-
tion to the standardized scor data and display a scatterplot of the first
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two PCs. Your plotted points should match the PCA biplot of Example
5.14 (Figure 5.14).

Refer to Exercise 5.12. Compute the coordinates of the arrows in Figure
5.14. Instead of the sample X, here you will transform the standard basis
vectors

10 0 00
01 0 00
001 00O
00 010
0 0 0 01

so your transformed basis is simply R. The arrows are scaled so that they
extend about 2.5 standard deviations, so to get the approximate length
of the arrows in the biplot, the transformation would be 2.5RA/2. Use
the arrows function to add the arrows to your plot of Exercise 5.12.
Compare your plot with the arrows to Figure 5.14.

The Hitters data set is provided in the package ISLR. This data con-
tains salary information and statistics for major league baseball players
in the U.S.A. All of the 19 variables (excluding Salary) are possible
predictor variables for a model to predict player salary. In this exercise,
you will apply principal components analysis on the predictors.

a. Review the structure of the data frame with str and note which
variables are factors. Create a new data frame omitting Salary. Then
convert the factor variables to integers {0,1} (they are binary so
this is not a problem).

b. Display a screeplot (see Example 5.13) and a table summarizing
the proportion of variance explained by each principal component.
How many PCs are suggested by the plot and the table?

c. Use the eigenvectors of the sample covariance matrix to compute
the principal components and list the top five rows of the matrix.

d. Use the principal components and the plot function to plot the
data in the (PC1, PC2) plane.

e. Interpret and discuss the results of PCA on this data.

Refer to Exercise 5.14 and the Hitters(ISLR) data set.

a. After removing the Salary variable, convert the three factor vari-
ables to binary {0, 1} data.

b. Repeat your analysis of Exercise 5.14 using prcomp. Display a
summary and get the first five rows of the PCs using the predict
method. Check that your results match your computation in Exer-
cise 5.14.

c. Display a screeplot of the eigenvalues using the screeplot function.

d. Print the variances of the principal components: Var(Z1), Var(Zs),....
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e. Display a PC biplot, and discuss the plot.
f. Interpret and discuss the results of PCA on this data.

5.16 Refer to Example 5.15. Use the PCA function in the FactoMineR package
to repeat the principal components analysis on the decathlon data, and
display biplots for (PC1, PC2), (PC1, PC3), (PC1, PC4), and (PC2,
PC3) without the individuals’ labels. What relationships do you observe
between the pairs or groups of track and field events from the plots?



Chapter 6

Monte Carlo Integration and
Variance Reduction

6.1 Introduction

Monte Carlo integration is a statistical method based on random sampling.
Monte Carlo methods were developed in the late 1940s after World War II, but
the idea of random sampling was not new. As early as 1777, Comte de Buffon
used a random experiment to empirically check his probability calculation for
the famous Buffon’s needle experiment. Another well-known example is that
W. S. Gossett used random sampling to study the distribution of what are
now called “Student t” statistics, publishing under the alias Student in 1908
[270]. The development of ENTAC, the first electronic computer, completed in
1946 at the University of Pennsylvania, and the seminal article by Metropolis
and Ulam in 1949 [207] marked an important new era in the application of
sampling methods. Teams of scientists at the Los Alamos National Laboratory
and many other researchers contributed to the early development, including
Ulam, Richtmyer, and von Neumann [291, 298]. For an interesting discussion of
the history of the Monte Carlo method and scientific computing, see Eckhardt
et al. [81] and Metropolis [204, 205].

6.2 Monte Carlo Integration

Let g(x) be a function and suppose that we want to compute f; g(x)dx
(assuming that this integral exists). Recall that if X is a random variable
with density f(z), then the mathematical expectation of the random variable
Y =g(X) is

Elg()) = [ gla)f (@i
If a random sample is available from the distribution of X, an unbiased esti-
mator of E[g(X)] is the sample mean.

147
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6.2.1 Simple Monte Carlo Estimator

Consider the problem of estimating 8 = fo x)dzr. If Xq,...,X,, is a
random Uniform(0,1) sample then

é:

= ;L;g(Xz

converges to E[g(X)] = 6 with probability 1, by the Strong Law of Large
Numbers. The simple Monte Carlo estimator of fo x)dz is gm(X).

Example 6.1 (Simple Monte Carlo integration). Compute a Monte Carlo

estimate of )
0= / e *dx
0

and compare the estimate with the exact value.

m <- 10000

x <- runif(m)

theta.hat <- mean(exp(-x))
print (theta.hat)

print(1 - exp(-1))

[1] 0.6355289

[1] 0.6321206
The estimate is § = 0.6355 and 6 = 1 — e~ = 0.6321. o
To compute f g(t)dt, make a change of variables so that the limits of

integration are from 0 to 1. The linear transformation is y = (t — a)/(b — a)
and dy = (1/(b — a))dt. Substituting,

b 1
/ glt)dt = / g(y(b— a) + a) (b — a)dy.
a 0

Alternately, we can replace the Uniform(0,1) density with any other density
supported on the interval between the limits of integration. For example,

/:g<t>dt=<b—a>/b (1)t

is b — a times the expected value of ¢g(Y'), where Y has the uniform density

n (a,b). The integral is therefore (b — a) times the average value of g(-) over
(a,b).

Example 6.2 (Simple Monte Carlo integration, cont.). Compute a Monte

Carlo estimate of .
0= / e *dx
2

and compare the estimate with the exact value of the integral.
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m <- 10000

x <- runif(m, min=2, max=4)
theta.hat <- mean(exp(-x)) * 2
print (theta.hat)

print(exp(-2) - exp(-4))

[1] 0.1172158
[1] 0.1170196
The estimate is § = 0.1172 and 6 = e~2 — e~4 = 0.1170. o

To summarize, the simple Monte Carlo estimator of the integral 6 = f: g(x)dx
is computed as follows.

1. Generate Xi,..., X, iid from Uniform(a, b).

2. Compute g(X) = L g(X;).

3. 0= (b—a)g(X).

Example 6.3 (Monte Carlo integration, unbounded interval). Use the Monte
Carlo approach to estimate the standard normal cdf

_ ! 1 —t2/2
O(x) /_ v e dt.

First, notice that we cannot apply the algorithm above directly because
the limits of integration cover an unbounded interval. However, we can break
this problem into two cases: z > 0 and = < 0, and use the symmetry of
the normal density to handle the second case. Then the problem is to esti-
mate 0 = [ e=t°/2dt for x > 0. This can be done by generating random
Uniform(0, ) numbers, but it would mean changing the parameters of the
uniform distribution for each different value of the cdf required. Suppose that
we prefer an algorithm that always samples from Uniform(0,1).

This can be accomplished by a change of variables. Making the substitution
y =t/x, we have dt = x dy and

1
0 = / xe_(zy)2/2dy.
0

Thus, § = Ey [ze~(#Y)"/2], where the random variable Y has the Uniform(0,1)
distribution. Generate iid Uniform(0,1) random numbers u1, . . . , t;,, and com-
pute

. IS w2
9=gm(u)=%2xe (uiz)™/2,
i=1

The sample mean 6 converges to E[é] =60 as m — oo. If x > 0, the estimate
of ®(x) is 0.5+ 6/v2x. If x < 0 compute (z) =1 — &(—x).
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x <- seq(.1, 2.5, length = 10)
m <- 10000
u <- runif(m)
cdf <- numeric(length(x))
for (i in 1:length(x)) {
g <= x[i] * exp(-(u * x[11)"2 / 2)
cdf [i] <- mean(g) / sqrt(2 * pi) + 0.5
}

Now the estimates § for ten values of x are stored in the vector cdf. Com-
pare the estimates with the value ®(x) computed (numerically) by the pnorm
function.

Phi <- pnorm(x)
print (round (rbind(x, cdf, Phi), 3))

Results for several values x > 0 are shown compared with the value of the
normal cdf function pnorm. The Monte Carlo estimates appear to be very close
to the pnorm values. (The estimates will be worse in the extreme upper tail
of the distribution.)

(,11 [,21 [[,31 [,4 [,51 f[,61 [,71 [,8] [,9] [,10]
x 0.10 0.367 0.633 0.900 1.167 1.433 1.700 1.967 2.233 2.500
cdf 0.54 0.643 0.737 0.816 0.879 0.925 0.957 0.978 0.990 0.997
Phi 0.54 0.643 0.737 0.816 0.878 0.924 0.955 0.975 0.987 0.994

Notice that it would have been simpler to generate random Uniform(0, x)
random variables and skip the transformation. This is left as an exercise. In
fact, the integrand of the previous example is itself a density function, and we
can generate random variables from this density. This provides a more direct
approach to estimating the integral. o

Example 6.4 (Example 6.3, cont.). Let I(-) be the indicator function, and
Z ~ N(0,1). Then for any constant x we have E[I(Z < z)] = P(Z < z) =
®(z), the standard normal cdf evaluated at .

Generate a random sample z1, ..., z,, from the standard normal distribu-
tion. Then the sample mean

m

O(z) = %Zl(zi <z

i=1

converges with probability one to its expected value E[I(Z < z)] = P(Z < x)
= ®(z).

x <- seq(.1, 2.5, length = 10)
m <- 10000
z <- rnorm(m)
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dim(x) <- length(x)
p <- apply(x, MARGIN = 1,
FUN = function(x, z) {mean(z < x)}, z = 2)

Now the estimates in p for the sequence of x values can be compared to the
result of the R normal cdf function pnorm.

Phi <- pnorm(x)
print (round(rbind(x, p, Phi), 3))

(,11 [,21 [,31 [,4 (,81 [,e1 L[,71 [,8] [,91 [,10]
x 0.10 0.367 0.633 0.900 1.167 1.433 1.700 1.967 2.233 2.500
p 0.546 0.652 0.741 0.818 0.876 0.925 0.954 0.976 0.988 0.993
Phi 0.54 0.643 0.737 0.816 0.878 0.924 0.955 0.975 0.987 0.994

In this example, compared with the results in Example 6.3, it appears that
we have better agreement with pnorm in the upper tail, but worse agreement
near the center. o

Summarizing, if f(x) is a probability density function supported on a set
A, (that is, f(z) >0 for all z € R and [, f(2) = 1), to estimate the integral

6= /A o(2) f(z)dz,

generate a random sample x1, . . ., ,, from the distribution f(z), and compute

the sample mean
m

6= %Zg(ml)

i=1

Then with probability one, 6 converges to E[f] = 6 as m — oc.

The standard error of § = L Yo g(xi).

m

The variance of 0 is 02 /m, where o2 = Vary(g(X)). When the distribution
of X is unknown, we substitute for F'x the empirical distribution F,, of the

sample 71, ..., 2m. The variance of § can be estimated by
52 1 5
moom2 Z[g(xi) —g(z)]". (6.1)
i=1
Note that
1 «— ——2
— i) — 6.2
=3 lgfes) — 9 (62)

=1

is the plug-in estimate of Var(g(X)). That is, (6.2) is the variance of U, where
U is uniformly distributed on the set of replicates {g(x;)}. The corresponding
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estimate of standard error of @ is

m

) 1/2
)= == {Z[gm) g(x)]z} . (63)

i=1
The Central Limit Theorem implies that
0 — E[0]
VVaré

converges in distribution to N (0, 1) as m — oo. Hence, if m is sufficiently large,
f is approximately normal with mean 6. The large-sample, approximately
normal distribution of # can be applied to put confidence limits or error bounds

on the Monte Carlo estimate of the integral, and check for convergence.

Example 6.5 (Error bounds for MC integration). Estimate the variance of
the estimator in Example 6.4, and construct approximate 95% confidence
intervals for the estimate of ®(2) and ®(2.5).

<- 2

<- 10000

<- rnorm(m)

<- (z < x) #the indicator function

<- mean((g - mean(g))~"2) / m

cdf <- mean(g)

c(cdf, v)

c(cdf - 1.96 * sqrt(v), cdf + 1.96 * sqrt(v))

<0m N B M

[1] 9.772000e-01 2.228016e-06
[1] 0.9742744 0.9801256

The probability P(I(Z < z) = 1) is ®(2) = 0.977. Here ¢g(X) has the dis-

tribution of the sample proportion of 1’s in m = 10000 Bernoulli trials with

p = 0.977, and the variance of g(X) is therefore (0.977)(1 — 0.977)/10000 =

2.223e-06. The MC estimate 2.228e-06 of variance is quite close to this value.
For x = 2.5 the output is

[1] 9.94700e-01 5.27191e-07
[1] 0.9932769 0.9961231

The probability P(I(Z < z) = 1) is ®(2.5) & 0.995. The Monte Carlo es-
timate 5.272e-07 of variance is approximately equal to the theoretical value
(0.995)(1 — 0.995)/10000 = 4.975e-07. o

6.2.2 Variance and Efficiency

We have seen that a Monte Carlo approach to estimating the integral
f: g(x)dx is to represent the integral as the expected value of a function of
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a uniform random variable. That is, if X ~ Uniform(a,b), then f(z) =
a <z <b,and

0= /ab g(z)dx

b
1
—(b-a) [ o) odo = (b a)Elg(X))

Recall that the sample-mean Monte Carlo estimator of the integral 6 is
computed as follows.

1. Generate Xi,..., X, iid from Uniform(a, b).

2. Compute g(X) = Lg(X;).

3. 0=(b—a)g(X).

The sample mean g(X) has expected value g(X) = 6/(b — a), and

Var(g(X)) = (1/m)Var(g(X)).

Therefore E[f] = 6 and

Var(d) = (b— a)*Var(g(X)) = W Var(g(X)). (6.4)

By the Central Limit Theorem, for large m, m is approximately normally
distributed, and therefore 0 is approximately normally distributed with mean
0 and variance given by (6.4).

The “hit-or-miss” approach to Monte Carlo integration also uses a sample
mean to estimate the integral, but the sample mean is taken over a different
sample and therefore this estimator has a different variance than formula (6.4).

Suppose f(x) is the density of a random variable X. The “hit-or-miss”
approach to estimating F'(x f ft)dt is as follows.

1. Generate a random bample X1,...,X,, from the distribution of X.
2. For each observation X;, compute

Xi<1"

17 — 3
s =ixsn={y Y17

Y

3. Compute F/'(;) =g9(X)=L13" I(X; <a).
Note that the random variable Y = g(X) has the Binomial(1, p) distribution,
where the success probability is p = P(X < z) = F(z). The transformed
sample Y7, ...,Y,, are the outcomes of m independent, identically distributed
Bernoulli trials. The estimator F'(x) is the sample proportion p = y/m, where

y is the total number of successes observed in m trials. Hence E[F/‘(;)] =p=
F(z) and Var(F(x))/—\ p(1 —p)/m = F(x)(1 - F(z))/m. -

The variance of F'(x) can be estimated by p(l p)/m=F(x)(1- ( ))/m.
The maximum variance occurs when F(z) = 1/2, so a conservative estimate

of the variance of 1*{(;) is 1/(4m).



154 Statistical Computing with R

Efficiency

If él and ég are two estimators for 6, then él is more efficient (in a statistical
sense) than 0o if
V(M"(@l)

— < 1.
Var(03)

If the variances of estimators 6; are unknown, we can estimate efficiency
by substituting a sample estimate of the variance for each estimator.

Note that variance can always be reduced by increasing the number of
replicates, so computational efficiency is also relevant.

6.3 Variance Reduction

We have seen that Monte Carlo integration can be applied to estimate
functions of the type E[g(X)]. In this section we consider several approaches
to reducing the variance in the sample mean estimator of § = E[g(X)].

If 0; and 0, are estimators of the parameter 6, and Var(ég) < Var(él),
then the percent reduction in variance achieved by using 0, instead of 0; is

100 (Var(él) — Yar(é2)> .
Var(0,)

The Monte Carlo approach to estimating § = E[g(X)] is to compute the
sample mean g(X) for a large number m of replicates from the distribution
of g(X). The function g(-) is often a statistic; that is, an n-variate function
g(Xq,...,X,) of asample. When ¢g(X) is used in that context, we have g(X) =

g(Xq,...,X,), where X denotes the sample elements. Unless it is not clear in
context, however, for simplicity we use g(X).
Let

x0=(xW . xUy,  j=1,....m

n

be iid from the distribution of X, and compute the corresponding replicates
Y, =g(XP . XDy, j=1,....m (6.5)

Then Y7, ...,Y,, are independent and identically distributed with distribution
of Y = g(X), and

1 m
Fln”

Thus, the Monte Carlo estimator § = Y is unbiased for § = E[Y]. The variance
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of the Monte Carlo estimator is

Varpg(X)

Var(f) = VarY =
m

Increasing the number of replicates m clearly reduces the variance of the
Monte Carlo estimator. However, a large increase in m is needed to get even a
small improvement in standard error. To reduce the standard error from 0.01
to 0.0001, we would need approximately 10000 times the number of replicates.
In general, if standard error should be at most e and Vary(g(X)) = o2, then
m > [02/e?] replicates are required.

Thus, although variance can always be reduced by increasing the number
of Monte Carlo replicates, the computational cost is high. Other methods for
reducing the variance can be applied that are less computationally expensive
than simply increasing the number of replicates.

In the following sections, some approaches to reducing the variance of this
type of estimator are introduced. Several approaches have been covered in
the literature. Readers are referred to [72, 117, 118, 129, 240, 250, 255] for
reference and more examples.

6.4 Antithetic Variables

Consider the mean of two identically distributed random variables U; and
Us. If U; and Us are independent, then

VU/I" ((]1;_[]2> = i(va/f’(Ul) + VCLT(U2)),

but in general we have

Var (U“QFUQ) - i(Var(Ul) + Var(Us) + 2Cou(Uy, Ua)),

so the variance of (U; + Us)/2 is smaller if U; and Us are negatively corre-
lated than when the variables are independent. This fact leads us to consider
negatively correlated variables as a possible method for reducing variance.

For example, suppose that X7, ..., X,, are simulated via the inverse trans-
form method. For each of the m replicates we have generated U; ~ Uni-
form(0,1), and computed XU) = F'(U;), 5 = 1,...,n. Note that if U is
uniformly distributed on (0,1), then 1 — U has the same distribution as U,
but U and 1 — U are negatively correlated. Then in (6.5)

Y; = g(Fx' (U, ..., Fx (UY))
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has the same distribution as

Y =g(Fx' (1= U, Fg (1= UY).

Under what conditions are Y; and Yj' negatively correlated? Below it is
shown that if the function g is monotone, the variables Y; and Y] are negatively
correlated.

Define (z1,...,25) < (y1,..-,yn) if ; < y;, j = 1,...,n. An n-variate

function ¢ = ¢g(Xi,...,X,) is increasing if it is increasing in its coordi-
nates. That is, g is increasing if g(x1,...,2,) < g(¥1,-..,yn) whenever
(1, 2n) < (Y1,---,Yn). Similarly g is decreasing if it is decreasing in its

coordinates. Then g is monotone if it is increasing or decreasing.

Proposition 6.1. If X1,..., X, are independent, and f and g are increasing
functions, then

E[f(X)g(X)] > E[f(X)]E[g(X)]- (6.6)
Proof. Assume that f and g are increasing functions. The proof is by induc-
tion on n. Suppose n = 1. Then (f(x)— f(y))(9(x) —g(y)) > 0 for all z,y € R.
Hence E[(f(X) = f(Y))(9(X) —g(Y))] = 0, and

E[f(X)g(X)] + E[f(Y)g(Y)] = E[f(X)g(Y)] + E[f(Y)g(X)].
Here X and Y are iid, so
2E[f(X)g(X)] = E[f(X)g(X)] + E[f(Y)g(Y)]
> E[f(X)g(Y)] + E[f(Y)g(X)] = 2E[f(X)]E[g(X)],

so the statement is true for n = 1. Suppose that the statement (6.6) is true
for X € R"~!. Condition on X,, and apply the induction hypothesis to obtain

E[f(X)g(X)|X7L = xn] > E[f(Xla s 7Xn—1vxn)]E[g(X17 ooy Xno1, l’n)}
= E[f((X)[ X5 = 2] E[g((X)[ X5 = 22)],
Ef(X)g(X)|Xn] = E[f(X)|Xa] E[g(X)]Xn)].

Now E[f(X)|X,] and E[g(X)|X,,)] are each increasing functions of X,,, so
applying the result for n = 1 and taking the expected values of both sides

E[f(X)g(X)] = EIE[f(X)|Xn] Elg(X)[Xn)]] = E[f(X)]E[g(X)].

Corollary 6.1. If g = g(X4,...,X,) is monotone, then
Y = g(Fg (V). Fx ' (Un))

and
Y'=g(Fg'(1=Uh),....,Fx' (1= Uy)).

are negatively correlated.
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Proof. Without loss of generality we can suppose that g is increasing. Then
Y =g(Fx'(U1), -, Fx ' (Un))

and

—Y'=f=—g(Fy'(1-U),.
are both increasing functions. Therefore E[g(U
E[YY'] < E[Y]E[Y'], which implies that

Ev
S
vV
o
S
S
&
=
S
o
=}
o

Cou(Y,Y') = E[YY'] — E[Y]E[Y'] <0,

so Y and Y’ are negatively correlated. O
The antithetic variable approach is easy to apply. If m Monte Carlo repli-
cates are required, generate m/2 replicates

Y; = g(Fx (U),... . Fx' (UD)) (6.7)
and the remaining m/2 replicates

Y] = g(Fx' (1= U),... . Fx' (1= UP)), (6.8)
where Ui(j) are iid Uniform(0,1) variables, ¢ =1,...,n, j =1,...,m/2. Then
the antithetic estimator is

:E%n+n+n+n A Y2 + Y 0}

m/2

Z(Y +Y/>

Thus nm/2 rather than nm uniform variates are required, and the variance
of the Monte Carlo estimator is reduced by using antithetic variables.

Example 6.6 (Antithetic variables). Refer to Example 6.3, illustrating Monte
Carlo integration applied to estimate the standard normal cdf

v
<I>(x) = / \/7277( 6_t2/2 dt.

Repeat the estimation using antithetic variables, and find the approximate
reduction in standard error. In this example (after change of variables) the
target parameter is § = Ey [xe_(’“’U)z/Q], where U has the Uniform(0,1) distri-
bution.

By restricting the simulation to the upper tail (see Example 6.3), the func-
tion g(+) is monotone, so the hypothesis of Corollary 6.1 is satisfied. Generate
random numbers uy, ..., Uy, 2 ~ Uniform(0, 1) and compute half of the repli-
cates using

%:g(j)(u):xe_(ujw)2/27 j:17...,m/2
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as before, but compute the remaining half of the replicates using

Yj/:xe—((l—uj)l')2/27 j=1,...,m/2.

The sample mean

m/2
H 1
b= gm(u) - m Z (x 6_(uﬂ)2/2 +z e_((l—“_;’)z)z/Q)

Jj=1

T (x e—(wim)?/2 | 4 e((lum)?/z)

:m/ZZ 2

Jj=1

converges to E[f] =  as m — oo. If z > 0, the estimate of ®(z) is 0.5+6//2x.
If x < 0 compute ®(z) = 1 — &(—z). The Monte Carlo estimation of the
integral ®(z) is implemented in the function MC.Phi below. Optionally MC.Phi
will compute the estimate with or without antithetic sampling. The MC.Phi
function could be made more general if an argument naming a function, the
integrand, is added (see integrate for an example of this type of argument
to a function).

MC.Phi <- function(x, R = 10000, antithetic = TRUE) {
u <- runif(R/2)
if (lantithetic) v <- runif(R/2) else
v<-1-nu
u <- c(u, v)
cdf <- numeric(length(x))
for (i in 1:length(x)) {
g <- x[i] * exp(-(u * x[i])"2 / 2)
cdf [i] <- mean(g) / sqrt(2 * pi) + 0.5

cdf
}

A comparison of estimates obtained from a single Monte Carlo experiment is
below.

x <- seq(.1, 2.5, length=5)

Phi <- pnorm(x)

set.seed(123)

MC1 <- MC.Phi(x, anti = FALSE)
set.seed(123)

MC2 <- MC.Phi(x)

print (round(rbind(x, MC1, MC2, Phi), 5))

[,1] [,2] [,3] [,4] [,5]
x  0.10000 0.70000 1.30000 1.90000 2.50000
MC1 0.53983 0.75825 0.90418 0.97311 0.99594
MC2 0.53983 0.75805 0.90325 0.97132 0.99370
Phi 0.53983 0.75804 0.90320 0.97128 0.99379
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The approximate reduction in variance can be estimated for given = by a
simulation under both methods, the simple Monte Carlo integration approach
and the antithetic variable approach.

m <- 1000
MC1 <- MC2 <- numeric(m)
x <- 1.95

for (i in 1:m) {
MC1[i] <- MC.Phi(x, R
MC2[i] <- MC.Phi(x, R

1000, anti = FALSE)
1000)

}

> print(sd(MC1))

[1] 0.007008661

> print(sd(MC2))

[1] 0.000470819

> print((var(MC1) - var(MC2))/var(MC1))
[1] 0.9954873

The antithetic variable approach achieved approximately 99.5% reduction in
variance at x = 1.95. o

6.5 Control Variates

Another approach to reduce the variance in a Monte Carlo estimator of
6 = E[g(X)] is the use of control variates. Suppose that there is a function f,
such that 4 = E[f(X)] is known, and f(X) is correlated with g(X).

Then for any constant ¢, it is easy to check that 6, = g(X) + ¢(f(X) — )
is an unbiased estimator of 6.

The variance

Var(0,) = Var(g(X)) + EVar(f(X)) 4+ 2¢ Cov(g(X), f(X)) (6.9)

is a quadratic function of c. It is minimized at ¢ = ¢*, where

o Covlg(X), /(X))

Var(f(X))
and minimum variance is
A ov 2
Var(d,-) = Var(g(X)) - € é‘i (:((JZ( }f(()‘;( Dy (6.10)

The random variable f(X) is called a control variate for the estimator
g(X). In (6.10) we see that Var(g(X)) is reduced by

[Cov(g(X), f(X))”
Var(f(X))
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hence the percent reduction in variance is

[Cov(g(X), f(X))”

0 a9 (X)) Var (7(X)

= 100[Cor(g(X), f(X))]*.

Thus, it is advantageous if f(X) and g(X) are strongly correlated. No reduc-
tion of variance is possible in case f(X) and g(X) are uncorrelated.

To compute the constant ¢*, we need Cov(g(X), f(X)) and Var(f(X)),
but these parameters can be estimated if necessary, from a preliminary Monte
Carlo experiment.

Example 6.7 (Control variate). Apply the control variate approach to com-
pute

1
0 = E[eY] :/ e"du,
0

where U ~ Uniform(0,1). In this example, we do not need simulation because
0 =e—1=1.718282 by integration, but this provides an example where we
can verify that the control variate approach is correctly implemented. If the
simple Monte Carlo approach is applied with m replicates, the variance of the
estimator is Var(g(U))/m, where

e -1

Var(g(U)) = Var(eV) = B[e?Y] — 02 = 5

— (e —1)% = 0.2420351.

A natural choice for a control variate is U ~ Uniform(0,1). Then E[U] =
1/2, Var(U) = 1/12, and Cov(eV,U) =1 — (1/2)(e — 1) = 0.1408591. Hence

. —Cov(eY,U)

- =12 —1)=—1. .
c ar @) +6(e—1) 690309

Our controlled estimator is - = e — 1.690309(U — 0.5). For m replicates,

N

mVar(f.-) is

v [Cov(eY, U))2  e2-1 9 e—1
- = —(e—1)2—12(1-
Var(e”) Var(U) 2 (e—1) 2
= (.2420356 — 12(0.1408591)?

= 0.003940175.

The percent reduction in variance using the control variate compared with the
simple Monte Carlo estimate is 100(1-0.003940175)/0.2429355 = 98.3781%.
Now we implement the control variate method for this problem and com-
pute empirically the percent reduction in variance achieved in the simulation.
Comparing the simple Monte Carlo estimate with the control variate approach
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m <- 10000

a<--12 + 6 * (exp(1) - 1)

U <- runif (m)

T1 <- exp(U) #simple MC
T2 <- exp(U) + a * (U - 1/2) #controlled

gives the following results

> mean(T1)

[1] 1.717834

> mean(T2)

[1] 1.718229

> (var(T1) - var(T2)) / var(T1)
[1] 0.9838606

illustrating that the percent reduction 98.3781% in variance derived above is
approximately achieved in this simulation. o

Example 6.8 (MC integration using control variates). Use the method of
control variates to estimate
1 —x
e
[
0o 1+=z

(A version of this problem appears in [69, p. 734].) The parameter of interest
is § = E[g(X)] and g(X) = e~/(1 + 2?), where X is uniformly distributed

n (0,1). We seek a function “close” to g(z) with known expected value, such
that g(X) and f(X) are strongly correlated. For example, the function f(z) =
e ?(1+2?)71is “close” to g(x) on (0,1) and we can compute its expectation.
If U is uniformly distributed on (0,1), then

1
E[f(U)] = 67'5/0 ﬁ du = e~ arctan(1) = e~°

I

Setting up a preliminary simulation to obtain an estimate of the constant c¢*,
we also obtain an estimate of Cor(g(U), f(U) = 0.974.

f <- function(u)
exp(-.5)/(1+u”2)

g <~ function(u)
exp(-u)/(1+u”2)

set.seed(510) #needed later
u <- runif(10000)

B <- f(u)

A <~ g(w

Estimates of ¢* and Cor(f(U), g(U)) are
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> cor(A, B)

[1] 0.9740585

a <- -cov(A,B) / var(B) #est of c*
> a

[1] -2.436228

Simulation results with and without the control variate follow.

m <- 100000
u <- runif(m)
T1 <- g(u)

T2 <- T1 + a * (£(u) - exp(-.5)*pi/4)

> c(mean(T1), mean(T2))

[1] 0.5253543 0.5250021

> c(var(T1), var(T2))

[1] 0.060231423 0.003124814

> (var(T1) - var(T2)) / var(T1)
[1] 0.9481199

Here the approximate reduction in variance of g(X) compared with g(X) +
& (f(X)—p) is 95%. We will return to this problem to apply another approach
to variance reduction, the method of importance sampling. o

6.5.1 Antithetic Variate as Control Variate

The antithetic variate estimator of the previous section is actually a special
case of the control variate estimator. First notice that the control variate
estimator is a linear combination of unbiased estimators of 8. In general, if él
and 65 are any two unbiased estimators of 8, then for every constant c,

éc = Cél + (1 - C)ég
is also unbiased for 6. The variance of c; + (1- C)ég is
Var(fy) + Var(0y — 0y) + 2¢ Cov(fy, 0, — 05). (6.11)

In the special case of antithetic variates in (6.7) and (6.8), #; and 0, are
identically distributed and Cor(6y,63) = —1. Then Cov(6y,63) = —Var(61),
and the variance in (6.11) is

Var, = 42Var(0,) — 4cVar(0y) + Var(6,) = (42 — 4c+ 1)Var(0y),

and the optimal constant is ¢* = 1/2. The control variate estimator in this
case is .
A 01 +6
90* = L 27

2
which (for this particular choice of 6, and ég) is the antithetic variable esti-
mator of 6.
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6.5.2 Several Control Variates

The idea of combining unbiased estimators of the target parameter 8 to
reduce variance can be extended to several control variables. In general, if
El¢;]=6,i=1,2,...k and ¢ = (cy,...,ck) such that Zle ¢; = 1, then

is also unbiased for #. The corresponding control variate estimator is

k

b= g(X) + 3 et (fi(X) - )

i=1

where u; = E[fi(X)],i=1,...,k, and
k
BI0] = Blo(x)] + 3 et BLA(X) — ] = 0.

The controlled estimate é@*, and estimates for the optimal constants ¢}, can
be obtained by fitting a linear regression model. The details are discussed in
Section 6.5.3.

6.5.3 Control Variates and Regression

In this section we will discuss the duality between the control variate ap-
proach and simple linear regression. This provides more insight into how the
control variate reduces the variance in Monte Carlo integration. In addition,
we have a convenient method for estimating the optimal constant c¢*, the tar-
get parameter, the percent reduction in variance, and the standard error of
the estimator, all by fitting a simple linear regression model.

Suppose that (X1,Y1),...,(X,,Y,) is a random sample from a bivariate
distribution with mean (ux,py) and variances (0%, 0% ). Let us compare the
least squares estimators for regression of X on Y with the control variate
estimator.

If there is a linear relation X = 51Y + 8y + ¢, and E[e] = 0, then

E[X] = E[E[X|Y]] = E[fo + p1Y +¢] = Bo + Bipy-

Here 5y and (; are constant parameters and ¢ is a random error variable.

Let us consider the bivariate sample (g(X1), f(X1)),...,(9(Xn), f(Xn)).
Now if g(X) replaces X and f(X) replaces Y, we have g(X) = Bo+ /51 f(X)+e,
and

Elg(X)] = Bo + AL E[f(X)].
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The least squares estimator of the slope is

YiLi(Xi = X)(¥i=Y) _ Cov(X,Y) _ Cou(g(X), /(X))
Y (¥ - V)2 Var(y) — Var(f(X))

R

Br =

This shows that a convenient way to estimate c¢* is to use the estimated slope
from the fitted simple linear regression model of g(X) on f(X):

L <- Im(gx ~ fx)
c.star <- -L$coeff[2]

The least squares estimator of the intercept is By = g(X) — (—¢*) f(X), so
that the predicted response at u = E[f(X)] is

Bo+ Brp = 9(X) + & (F(X) — &p)

=9(X)+&(f(X) —p) =

>

[

Thus, the control variate estimate 0z is the predicted value of the response
variable (g(X)) at the point u = E[f(X)].
The estimate of the error variance in the regression of X on Y is

62 = Var(X — X) = Var(X — (Bo + ArY))

the residual mean squared error (MSE). The estimate of variance of the control
variate estimator is

a0 4 & (FO) — oy — Vo) + & (X) — )

n
_ Var(g(X) + /(X)) _ 82

n n’
Thus, the estimated standard error of the control variate estimate is easily

computed using R by applying the summary method to the 1m object from the
fitted regression model, for example using

se.hat <- summary(L)$sigma

to extract the value of 6. = vV MSE.

Finally, recall that the proportion of reduction in variance for the control
variate is [Cor(g(X), f(X))]. In the simple linear regression model, the coef-
ficient of determination is the same number (R2), which is the proportion of
total variation in g(X) about its mean explained by f(X).

Example 6.9 (Control variate and regression). Returning to Example 6.8,
let us repeat the estimation by fitting a regression model. In this problem,

—x 1 —x
g(x) ¢ 0= / ¢ dx,
0

:1+:172’ 1+ 22
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and the control variate is
f)=e?Q+2%)7",  o0<z<l,

with u = E[f(X)] = e~57m/4. To estimate the constant c*, fit the linear model
regressing g(z) on the control variate f(z). Extract the slope coefficient and
set &* = 731.

set.seed(510)

mu <- exp(-.5)*pi/4
u <- runif (10000)

f <- exp(-.5)/(1+u"2)
g <- exp(-u)/(1+u~2)

L <- 1Im(g ~ £)
L

c

>

.star <- - L$coeff[2]
c.star
f
-2.436228

We used the same random number seed as in Example 6.8 and obtained the
same estimate for c¢*. Now fs« is the predicted response at the point p =
0.4763681, so

theta.hat <- sum(L$coeff * c(1, mu)) #pred. value at mu

The estimate é, residual mean squared error and the proportion of reduction
in variance (R-squared) agree with the estimates obtained in Example 6.8.

> theta.hat

[1] 0.5253113

> summary (L) $sigma~2
[1] 0.003117644

> summary (L) $r.squared
[1] 0.9484514

&

In case several control variates are used, similarly one can estimate a linear
model

k
X=0o+) BiYite
i=1
to estimate the optimal constants ¢* = (¢}, ..., cf). Then —¢* = (Bl, . ,Bk)
and the estimate is the predicted response X at the point u = (u1,. .., k)
(see Section 6.5.2). The estimated variance of the controlled estimator is again

62/n = MSE /n, where n is the sample size (the number of replicates, in this
case).
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Example 6.10 (Control variates and regression, cont.). Continuing with Ex-
ample 6.9, let us add a second control variate and use multiple regression to
estimate ¢*, which for two control variates is a vector ¢* = (¢, c3). Here

g(z) ¢ 0:/0 g(z)dz,

=Ty

and the control variates are

67.5 e U

fl(u)=m7 fQ(U’):ﬁv

0<u<l,
with

= (1, p2) = (ELAU)], E[f2(U)] = (e7""1/4,1) = (0.4763681, 1).

u <- runif (10000)

f1 <- exp(-.5) / (1 + u™2)
f2 <- exp(-u) / (1 - exp(-1))
g <- exp(-u) / (1 + u™2)

## fit the multiple regression with two predictors
L2 <- Im(g ~ f1 + £2)

The coefficients of the model can be extracted from the 1m. We need the
coefficients for the two predictors, which are in L2$coeff [2:3].

L2$coeff

c.star <- - L2%coeff[2:3]
c.star

mul <- exp(-.5) * pi/4
mu2 <- 1

mu <- c(mul, mu2)

> L2$coeff
(Intercept) f1 f2
-0.3345326 0.0240755 1.3414141
> c.star <- - L2$coeff[2:3]
> c.star
f1 f2
-0.0240755 -1.3414141
> mu

[1] 0.4763681 1.7182818
We found that the estimate of the optimal c¢* is
¢ = (67,¢85) = (—0.0240755, —1.3414141).

Then 6 is the predicted response at p and the estimated variance of the control
estimator is M .SE/m, where m is the number of replicates in the simulation.
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theta.hat <- sum(L2$coeff * c(1, mu)) #pred. value at mu
theta.hat

## alternately
df <- data.frame(fi=mul, f2=mu2)
theta.hat <-predict(L2, df)

## MSE / n is the est. variance of the control estimator
MSE <- summary(L2)$sigma™2

MSE

sqrt (MSE / 10000)

> c.star

f1 £2
-0.0240755 -0.8479354
> theta.hat

1
0.5248716
> MSE
[1] 5.889139e-05

167

The estimates are § = 0.5248716 and MSE = 5.89¢ — 05. The estimated se

of O is 7.67e — 05.

Compare these results with the previous estimates using naive MC (&12\40 =
0.060231423) and one control variate (62, = 0.003117644). Compute the per-
cent reduction in variance for each. It is a weighted average of the R? values,
but it is easier to compute the percent reduction in variance directly. In the

ratio, the denominator 10000 in MSE(@) cancels from each term.

var0 <- 0.060231423 #naive MC
varl <- 0.003117644 #one control variate
var2 <- summary(L)$sigma”2 #new estimator

# percent reduction in variance
100 * (varO - varl) / varO
100 * (varl - var2) / varl
100 * (var0 - var2) / var0O

> 100 * (varO - varl) / varO
[1] 94.82389
> 100 * (varl - var2) / varl
[1] 98.11103
> 100 * (varO - var2) / varO
[1] 99.90222

These percentage reductions are 94.82, 98.90, and 99.90, respectively.

According to WolframAlpha, 6 = 0.524797. By numerical integration in
R, 6 = 0.5247971 with absolute error < 5.8e — 15. Our estimates for 6 were
0.5253113 and 0.5248716 by the one and two control variate methods, respec-

tively.

&
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6.6 Importance Sampling

The average value of a function g(x) over an interval (a, b) is usually defined

(in calculus) by
1 b
- a/ g(z)dz.

Here a uniform weight function is applied over the entire interval (a,b). If X
is a random variable uniformly distributed on (a,b), then

b b
Blg(0)) = [ glw);ro do = [ g)dn,  (612)

which is simply the average value of the function g(z) over the interval (a,b)
with respect to a uniform weight function. The simple Monte Carlo method
generates a large number of replicates Xy, ..., X,, uniformly distributed on

[a,b] and estimates f; g(z)dx by the sample mean

which converges to f: g(x)dx with probability 1 by the strong law of large
numbers. One limitation of this method is that it does not apply to unbounded
intervals. Another drawback is that it can be inefficient to draw samples uni-
formly across the interval if the function g(z) is not very uniform.

However, once we view the integration problem as an expected value prob-
lem (6.12), it seems reasonable to consider other weight functions (other den-
sities) than uniform. This leads us to a general method called importance
sampling.

Suppose X is a random variable with density function f(z), such that
f(z) > 0 on the set {z : g(x) > 0}. Let Y be the random variable g(X)/f(X).
Then

/g(:c)dz = /‘Jqfii))f(x)dx = E[Y].

Estimate E[Y] by simple Monte Carlo integration. That is, compute the av-

erage
1 & 1 &K g(X;
REEIN ok
mi= m = F(Xq)
where the random variables X1, ..., X,, are generated from the distribution
with density f(z). The density f(z) is called the importance function.
In an importance sampling method, the variance of the estimator based

onY =g(X)/f(X) is Var(Y)/m, so the variance of Y should be small. The
variance of Y is small if Y is nearly constant, so the density f(-) should be
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“close” to g(x). Also, the variable with density f(-) should be reasonably easy
to simulate.

In Example 6.5, random normals are generated to compute the Monte
Carlo estimate of the standard normal cdf, ®(2) = P(X < 2). In the naive
Monte Carlo approach, estimates in the tails of the distribution are less precise.
Intuitively, we might expect a more precise estimate for a given sample size
if the simulated distribution is not uniform. In this case, the average must
be a weighted average rather than the unweighted sample mean, to correct
for this bias. This method is called importance sampling (see Robert and
Casella [240, Sec. 3.3]). The advantage of importance sampling is that the
importance sampling distribution can be chosen so that variance of the Monte
Carlo estimator is reduced.

Suppose that f(z) is a density supported on a set A. If ¢(x) > 0 on A,
then the integral

0= /A o) (2)da,

can be written

= x f@) x)dx
0= [ oo
If ¢(x) is a density on A, then an estimator of 6 = Ey[g(x)f(x)/¢o(x)] is

n

_ 1 L f(XG)
= Zg(xl)(b(Xi)’

i=1

>

where Xi,..., X, is a random sample from density ¢(z). The function ¢(-)
is called the enwvelope or the importance sampling function. There are many
densities ¢(x) that are convenient to simulate. Typically one should choose
¢(z) so that ¢(x) = |g(z)|f(x) on A (and ¢(x) has finite variance).

Example 6.11 (Choice of the importance function). In this example (from
[69, p. 728]) several possible choices of importance functions to estimate

1 —x
/Ldm
0 1+l’2

by importance sampling method are compared. The candidates for the impor-
tance functions are

folz) =1, 0<z<l,

fi(z) =e7", 0<z < o0,

fo(z) = (142~ Y/m, —o00 <z < 00,
fa(x)=e"/(1—eh, 0<z<l,
fa(z) =41 + 237/, 0<z<l.
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The integrand is

e /(14 2?), if (0<z<1);
9(w) = { 0, otherwise.

While all five of the possible importance functions are positive on the set
0 <z < 1 where g(x) > 0, f1 and fo have larger ranges and many of the
simulated values will contribute zeros to the sum, which is inefficient. All of
these distributions are easy to simulate; fo is standard Cauchy or ¢(v = 1).
The densities are plotted on (0,1) for comparison with g(z) in Figure 6.1(a).
The function that corresponds to the most nearly constant ratio g(z)/f(z)
appears to be f3, which can be seen more clearly in Figure 6.1(b). From the
graphs, we might prefer f3 for the smallest variance.

m <- 10000

theta.hat <- se <- numeric(5)

g <- function(x) {
exp(-x - log(1+x~2)) * (x > 0) * (x < 1)
}

x <- runif(m) #using fO
fg <- gx)

theta.hat[1] <- mean(fg)
se[1] <- sd(fg)

x <- rexp(m, 1) #using f1
fg <- g(x) / exp(-x)
theta.hat[2] <- mean(fg)
se[2] <- sd(fg)

x <- rcauchy(m) #using £f2

i <= c(which(x > 1), which(x < 0))

x[i] <- 2 #to catch overflow errors in g(x)
fg <- g(x) / dcauchy(x)

theta.hat[3] <- mean(fg)

se[3] <- sd(fg)

u <- runif(m) #£3, inverse transform method
x <= - log(1 - u * (1 - exp(-1)))

fg <- g(x) / (exp(-x) / (1 - exp(-1)))
theta.hat[4] <- mean(fg)

se[4] <- sd(fg)

u <- runif(m) #f4, inverse transform method
x <- tan(pi * u / 4)

fg <-gx) / (4 / ((1 + x72) * pi))
theta.hat[5] <- mean(fg)

se[5] <- sd(fg)

Code to display Figures 6.1(a) and 6.1(b) is given at the end of this chapter.
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FIGURE 6.1: Importance functions in Example 6.11: fo,..., f4 (lines 0:4)
with g(z) in (a) and the ratios g(z)/f(x) in (b).

The estimates (labeled theta.hat) of fol g(x)dz and the corresponding
standard errors se for the simulation using each of the importance functions
are

> rbind(theta.hat, se/sqrt(m))
[,1] [,2] [,3] [,4] [,5]
theta.hat 0.524114007 0.531358351 0.5461507 0.5250698759 0.526049238
0.002436559 0.004181264 0.0096613 0.0009658794 0.001427685

so the simulation indicates that f3 and possibly f; produce smallest variance
among these five importance functions, while f; produces the highest variance.
The standard Monte Carlo estimate without importance sampling has se =
0.244 (fo = 1). The importance functions f; and fy do not reduce error, but
f3 and f, each reduce the standard error in estimating 6.

The Cauchy density fo is supported on the entire real line, while the in-
tegrand g(z) is evaluated on (0,1). There are a very large number of zeros
(about 75%) produced in the ratio g(x)/f(x) in this case, and all other values
far from 0, resulting in a large variance. The following summary statistics for
the ratio g(x)/fo(z) confirm this.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.5173 0.0000 3.1380

For f; there is a similar inefficiency, as f; is supported on (0, c0), which also
generates many zeros in the sum of g(x)/f(x) for the values outside of (0,1).
The inefficiency for f; is not as bad as fo (about 37% zeros), however, because
the tail of the distribution is lighter. The following summary statistics for the
ratio g(x)/ f1(z) also confirm this.
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.6891 0.5314 0.9267 1.0000
o
Example 6.11 illustrates that care must be taken to select an importance
function that results in small variance of Y = ¢(X)/f(X). The importance
function should be an f that is supported on exactly the set where g(z) > 0,
and such that the ratio g(z)/f(z) is nearly constant.

Variance in Importance Sampling

If ¢(z) is the importance sampling distribution (envelope), f(z) =1 on A,
and X has pdf ¢(z) supported on A, then

o= Jsers = [ S oo = 3]

If X1,...,X, is a random sample from the distribution of X, the estimator
is again the sample-mean

Thus, the importance sampling method is a sample-mean method, and

A A A 2 xr
Var(f) = E[6?] — (E[0)? = /A f;((x)) da — 02,

The distribution of X can be chosen to reduce the variance of the sample-
mean estimator. The minimum variance

(/ |g<x>|d:c)2 e

¢(z) =

is obtained when

Unfortunately, the problem is to estimate f 4 9(z)dz, so it is unlikely that the
value of [, |g(x)|dz in the denominator of ¢(x) is available. Although it may
be difficult to choose ¢(x) to attain minimum variance, variance may be “close
to” optimal if ¢(z) is chosen so that the shape of the density ¢(x) is “close
to” |g(z)| on A.

For general f(x), choose ¢(x) so that ¢(x) = |g(z)|f(z) on A. If the ratio
of the function being integrated to the importance function is bounded, then
the importance sampling estimator will have finite variance. Considering the
relative computational efficiency of estimators, one should also choose ¢(z) so
that the cost (time) to generate the Monte Carlo replicates is small.
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6.7 Stratified Sampling

Another approach to variance reduction is stratified sampling, which aims
to reduce the variance of the estimator by dividing the interval into strata and
estimating the integral on each of the stratum with smaller variance. Linearity
of the integral operator and the strong law of large numbers imply that the
sum of these estimates converges to [ g(z)dx with probability 1. In stratified
sampling, the number of replicates m and number of replicates m; to be drawn
from each of k strata are fixed so that m = mj + - - - +my, with the goal that

~

Var(@p(ma,...,my)) < Var(8),

where ék (ma, ..., my) is the stratified estimator and 0 is the standard Monte
Carlo estimator based on m = my + - - - + my replicates.
To see how this might work, let us first see a numerical example.

Example 6.12 (Example 6.11, cont.). In Figure 6.1(a) it is clear that our
integrand g(x) is not constant on (0,1). Divide the interval into, say, four
subintervals, and compute a Monte Carlo estimate of the integral on each
subinterval using 1/4 of the total number of replicates. Then combine these
four estimates to obtain the estimate of fol e~ *(1+ 2%)~! dx. Does it appear
that the variance of the estimator is reduced, compared with the variance of
the standard Monte Carlo estimator?

M <- 20  #number of replicates
T2 <- numeric(4)
estimates <- matrix(0, 10, 2)

g <- function(x) {
exp(-x - log(1+x72)) * (x > 0) * (x < 1) }

for (i in 1:10) {
estimates[i, 1] <- mean(g(runif(M)))
T2[1] <- mean(g(runif(M/4, 0, .25)))
T2[2] <- mean(g(runif(M/4, .25, .5)))
T2[3] <- mean(g(runif(M/4, .5, .75)))
T2[4] <- mean(g(runif(M/4, .75, 1)))
estimates[i, 2] <- mean(T2)

}

The resulting estimates are:

> estimates

[,1] [,2]
[1,] 0.6281555 0.5191537
[2,] 0.5105975 0.5265614
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[3,] 0.4625555 0.5448566
(4,1 0.4999053 0.5151490
(6,1 0.4984972 0.5249923
[6,] 0.4886690 0.5179625
[7,]1 0.5151231 0.5246307
[8,] 0.5503624 0.5171037
[9,] 0.5586109 0.5463568

[10,] 0.4831167 0.5548007

> apply(estimates, 2, mean)
[1] 0.5195593 0.5291568

> apply(estimates, 2, var)
[1] 0.0023031762 0.0002012629

Although 10 runs are not really enough to get good estimates of the standard
errors, in this simulation it appears that stratification has improved variance
by a factor of about 10. o

Intuitively, there can be more reduction in variance using stratification
when the means of the strata are widely dispersed, as in Example 6.12, than
if the means of the strata are approximately equal. For integrands that are
monotone functions, stratification similar to Example 6.12 should be an effec-
tive way to reduce variance.

Proposition 6.2. Denote the standard Monte Carlo estimator with M repli-
cates by OM, and let
k

denote the stratified estimator with equal size m = M /k strata. Denote the
mean and variance of g(U) on stratum j by 8; and ajz, respectively. Then

Var(@M) > Var(6%).

?rM—‘

Proof. By independence of 6; ’s,

Var(0%) = Var li iiﬁ:ii&
k = k2 = m Mlcj:1 a

Now, if J is the randomly selected stratum, it is selected with uniform prob-
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ability 1/k, and applying the conditional variance formula

w - %(VGT(E[Q(UL])]) + E[Var(g(U|J)))

Var(6;) + E [a‘j'])

Var(M) =
=

2
9

M”

1 1
= M VCL’I"(GJ) E

j=1
1 A
= MVar(HJ) + Var(6%) > Var(6).

The inequality is strict except in the case where all the strata have identical
means. O
From the above inequality it is clear that the reduction in variance is larger
when the means of the strata are widely dispersed.
A similar proof can be applied in the general case when the strata have
unequal probabilities. See Fishman [97, Sec. 4.3] for a proof of the general
case.

Example 6.13 (Examples 6.11-6.12, cont., stratified sampling). Stratified
sampling is implemented in a more general way, for the Monte Carlo estimate
of fol e (1 + 2%)~'dz. The standard Monte Carlo estimate is also obtained
for comparison.

M <- 10000 #number of replicates

k <- 10 #number of strata
r <- M / k #replicates per stratum
N <- 50 #number of times to repeat the estimation

T2 <- numeric(k)
estimates <- matrix(0, N, 2)

g <- function(x) {
exp(-x - log(1+x72)) * (x > 0) * (x < 1)
}

for (i in 1:N) {
estimates[i, 1] <- mean(g(runif(M)))
for (j in 1:k)
T2[j] <- mean(g(runif M/k, (j-1)/k, j/k)))
estimates[i, 2] <- mean(T2)

}
The result of this simulation produces the following estimates.

> apply(estimates, 2, mean)
[1] 0.5251321 0.5247715

> apply(estimates, 2, var)
[1] 6.188117e-06 6.504485e-08

This represents a more than 98% reduction in variance. o
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6.8 Stratified Importance Sampling

A modification to the importance sampling method of estimating 6 =
[ g(z)dx is stratified importance sampling.

Choose a suitable importance function f. Suppose that X is generated
with density f and cdf F' using the probability integral transformation. If M
replicates are generated, the importance sampling estimate of 6 has variance
% /M, where 02 = Var(g(X)/f(X)).

For the stratified importance sampling estimate, divide the real line into k
intervals I; = {z : a;_1 < z < a;} with endpoints ag = —o0, a; = F~1(j/k),
j=1,...,k =1, and a = oo. (The real line is divided into intervals corre-
sponding to equal areas 1/k under the density f(z). The interior endpoints
are the percentiles or quantiles.) On each subinterval define g;(z) = g(z) if
x € I; and g;(x) = 0 otherwise. We now have k parameters to estimate,

aj
Qj:/ gj(z)dx, i=1,...k

j—1

and @ = 01 + - - - + ;. The conditional densities provide the importance func-
tions on each subinterval. That is, on each subinterval I;, the conditional
density f; of X is defined by

_ ) f@aii<e<ay)
file) = fxn, (2l1) = P(Cljj—l sz < aj;

_f@)
1/k

=kf(z), aj_1 <z<aj.

Let 07 = Var(g;(X)/f;(X)). For each j = 1,...,k we simulate an impor-

tance sample size m, compute the importance sampling estimator 9} of 6; on

the j*" subinterval, and compute 651 = % Zle éj. Then by independence of

91)"'70k7

S\JL

k k k
Var(03") = Var Z Z % Z o;

j=1 j=1

Denote the importance sampling estimator by 67. In order to determine
whether 057 is a better estimator of @ than 67, we need to check that Var(657)
is smaller than the variance without stratification. The variance is reduced by
stratification if

e MRS SRR S

Thus, we need to prove the following.
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Proposition 6.3. Suppose M = mk is the number of replicates for an im-
portance sampling estimator 01, and 05! is a stratified importance sampling
estimator, with estimates 8; for 0; on the individual strata, each with m repli-

cates. If Var(él) =02/M and Var(éj) = af/m, j=1,...,k, then

k
o? kY 07 >0, (6.13)
j=1
with equality if and only if 0, = - -+ = 0. Hence stratification never increases

the variance, and there exists a stratification that reduces the variance except
when g(x) s constant.

Proof. To determine when the inequality (6.13) holds, we need to consider
the relation between the random variables with densities f; and the random
variable X with density f.

Consider a two-stage experiment. First a number J is drawn at random
from the integers 1 to k. After observing J = j, a random variable X* is
generated from the density f; and

9;(X) _ g;(X")
fi(X) kf(X*)

To compute the variance of Y* we apply the conditional variance formula

Y* =

Var(Y*) = ElVar(Y*|J)] + Var(E[Y™|J]). (6.14)
Here i
E[Var(Y*|J)] ZUQP %Z o?

and Var(E[Y*|J]) = Var(8;). Thus in (6.14) we have

k
Var(Y™) = Z ]2+Vart9J

?rM—‘

On the other hand,
E*Var(Y*) = K*E[Var(Y*|J)] + k*Var(E[Y*|J]).

and
o> =Var(Y) = Var(kY*) = k*Var(Y™)

which imply that

k k
i 1
0% = EVar(Y*) = k? - Yoo+ Var(ty) | =k oF +k*Var(9,).
Jj=1 j=1
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Therefore i
o — k:ZU? = k*Var(0;) >0,
j=1
and equality holds if and only if 6; = - -- = 0. O

Example 6.14 (Example 6.11, cont.). In Example 6.11 our best result was
obtained with importance function f3(z) = e */(1 —e™ '), 0 < z < 1. From
10000 replicates we obtained the estimate 6 = 0.5257801 and an estimated
standard error 0.0970314. Now divide the interval (0,1) into five subintervals,
(4/5,(j +1)/5),7=0,1,...,4.
Then on the ;" subinterval variables are generated from the density
e " j—1 j

, <z <Z.
1—e 1 5 %55

The implementation is left as an exercise. o

Exercises

6.1 Compute a Monte Carlo estimate of

w/3
/ sint dt
0

and compare your estimate with the exact value of the integral.

6.2 Refer to Example 6.3. Compute a Monte Carlo estimate of the standard
normal cdf, by generating from the Uniform(0,z) distribution. Compare
your estimates with the normal cdf function pnorm. Compute an esti-
mate of the variance of your Monte Carlo estimate of ®(2), and a 95%
confidence interval for ®(2).

6.3 Compute a Monte Carlo estimate 0 of

0.5
0= / e *dx
0

by sampling from Uniform(0, 0.5), and estimate the variance of 6. Find
another Monte Carlo estimator 6* by sampling from the exponential
distribution. Which of the variances (of 6 and 6*) is smaller, and why?

6.4 Write a function to compute a Monte Carlo estimate of the Beta(3,
3) cdf, and use the function to estimate F'(x) for z = 0.1,0.2,...,0.9.
Compare the estimates with the values returned by the pbeta function
in R.



6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12
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Compute (empirically) the efficiency of the sample mean Monte Carlo
method of estimation of the definite integral in Example 6.3 relative to
the “hit or miss” method in Example 6.4.

In Example 6.7 the control variate approach was illustrated for Monte
Carlo integration of
1
0= / e’dx.
0

Now consider the antithetic variate approach. Compute Cov(eV, el V)
and Var(eV +e'~Y), where U ~ Uniform(0,1). What is the percent
reduction in variance of § that can be achieved using antithetic variates
(compared with simple MC)?

Refer to Exercise 6.6. Use a Monte Carlo simulation to estimate 6 by
the antithetic variate approach and by the simple Monte Carlo method.
Compute an empirical estimate of the percent reduction in variance
using the antithetic variate. Compare the result with the theoretical
value from Exercise 6.6.

Let U ~ Uniform(0,1), X = aU, and X’ = a(1 — U), where a is a con-
stant. Show that p(X, X') = —1. Is p(X, X’) = —1 if U is a symmetric
beta random variable?

The Rayleigh density [162, (18.76)] is

z . .
flx) == 6712/(20—2)7 x>0,0>0.
o
Implement a function to generate samples from a Rayleigh(c) distribu-
tion, using antithetic variables. What is the percent reduction in vari-

’
ance of 25X compared with £1£X2 for independent X1, X»?

Use Monte Carlo integration with antithetic variables to estimate

1 —x
€
—d
/0 1+22°0

and find the approximate reduction in variance as a percentage of the
variance without variance reduction.

If 91 and 92 are unbiased estimators of 4, and él and ég are antithetic,
we derived that ¢* = 1/2 is the optimal constant that minimizes the
variance of éc = Cég +(1- C)ég. Derive ¢* for the general case. That is,
if él and éz are any two unbiased estimators of 6, find the value ¢* that
minimizes the variance of the estimator ée = cég +(1- C)ég in equation
(6.11). (¢* will be a function of the variances and the covariance of the
estimators.)

Let éJIcS be an importance sampling estimator of § = [ g(z)dz, where the
importance function f is a density. Prove that if g(x)/f(z) is bounded,
then the variance of the importance sampling estimator 9;3 is finite.
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6.13 Find two importance functions f; and fo that are supported on (1, 00)
and are “close” to

, x> 1.

Which of your two importance functions should produce the smaller
variance in estimating

/ ~ Lz e~ %/2 gy
1 vV 2T
by importance sampling? Explain.

6.14 Obtain a Monte Carlo estimate of
[ee) LC2 5
T T2
e dxr
/1 V2T

6.15 Obtain the stratified importance sampling estimate in Example 6.14
and compare it with the result of Example 6.11.

by importance sampling.
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R Code

Code to display the plot of importance functions in Figures 6.1(a)
and 6.1(b).

x <- seq(0, 1, .01)

w <- 2

f1 <- exp(-x)

2 <- (1 / pi) / (1 + x72)

£3 <- exp(-x) / (1 - exp(-1))
f4 <- 4/ ((1 + x72) * pi)

g <- exp(-x) / (1 + x72)

#figure (a)
plot(x, g, type = "1", main = "", ylab = "",
ylim = c(0,2), 1lwd = w)
lines(x, g/g, 1ty = 2, lwd = w)
lines(x, f1, 1ty = 3, 1lwd = w)
lines(x, f2, 1ty = 4, 1lwd = w)
lines(x, £3, 1ty = 5, 1lwd = w)
lines(x, f4, lty = 6, lwd = w)
legend("topright", legend = c("g", 0:4),
1ty = 1:6, lwd = w, inset = 0.02)

#figure (b)
plot(x, g, type = "1", main = "", yla
ylim = c(0,3.2), lwd = w, 1ty = 2)
lines(x, g/f1, 1ty = 3, lwd = w)
lines(x, g/f2, 1ty = 4, lwd = w)
lines(x, g/f3, 1ty = 5, lwd = w)
lines(x, g/f4, 1ty = 6, lwd = w)
legend("topright", legend = c(0:4),
lty = 2:6, lwd = w, inset = 0.02)
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Chapter 7

Monte Carlo Methods in Inference

7.1 Introduction

Monte Carlo methods encompass a vast set of computational tools in mod-
ern applied statistics. Monte Carlo integration was introduced in Chapter 6.
Monte Carlo methods may refer to any method in statistical inference or nu-
merical analysis where simulation is used. However, in this chapter only a
subset of these methods are discussed. This chapter introduces some of the
Monte Carlo methods for statistical inference. Monte Carlo methods can be
applied to estimate parameters of the sampling distribution of a statistic,
mean squared error (MSE), percentiles, or other quantities of interest. Monte
Carlo studies can be designed to assess the coverage probability for confidence
intervals, to find an empirical Type I error rate of a test procedure, to estimate
the power of a test, and to compare the performance of different procedures
for a given problem.

In statistical inference there is uncertainty in an estimate. The methods
covered in this chapter use repeated sampling from a given probability model,
sometimes called parametric bootstrap, to investigate this uncertainty. If we
can simulate the stochastic process that generated our data, repeatedly draw-
ing samples under identical conditions, then ultimately we hope to have a
close replica of the process itself reflected in the samples. Other Monte Carlo
methods, such as (nonparametric) bootstrap, are based on resampling from
an observed sample. Resampling methods are covered in Chapters 8 and 10.
Monte Carlo integration and Markov Chain Monte Carlo methods are covered
in Chapters 6 and 11. Methods for generating random variates from specified
probability distributions are covered in Chapter 3. See the references in Sec-
tion 6.1 on some of the early history of Monte Carlo methods, and for general
reference see for example [68, 91, 119, 240, 256].

183
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7.2 Monte Carlo Methods for Estimation

Suppose X7i,..., X, is a random sample from the distribution of X. An
estimator 6 for a parameter 6 is an n variate function

0=0(Xy,...,X,)

of the sample. Functions of the estimator 0 are therefore n-variate functions of
the data, also. For simplicity, let 2 = (x1,...,2,)" € R™, and let (), () ...
denote a sequence of independent random samples generated from the distri-
bution of X. Random variates from the sampling distribution of # can be
generated by repeatedly drawing independent random samples () and com-

puting 6@ = é(x( ng)) for each sample.

7.2.1 Monte Carlo Estimation and Standard Error

Example 7.1 (Basic Monte Carlo estimation). Suppose that X, X» are iid
from a standard normal distribution. Estimate the mean difference F|X; —X5|.

To obtain a Monte Carlo estimate of § = E[g(X1, X3)] = F|X; — X3| based

on m replicates, generate random samples z() = (a:? ) Jcé )) of size 2 from

the standard normal distribution, j =1,...,m. Then compute the replicates
60 = gj(z1,22) = |x§]) - xéj)|, j=1,...,m, and the mean of the replicates

| A ,
§ = E 0V = g(X1, X,) = Z |x(3) gy)‘.

ng

This is easy to implement, as shown below.

m <- 1000
g <- numeric(m)
for (i in 1:m) {
x <- rnorm(2)
gli]l <- abs(x[1] - x[2])
}

est <- mean(g)
One run produces the following estimate.

> est
[1] 1.128402

One can derive by integration that E|X; — Xo| = 2/y/7 = 1.128379 and
Var(|X; — X2|) = 2—4/n. In this example the standard error of the estimate
(2—4/m)/m = 0.02695850. o
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Estimating the standard error of the mean

The standard error of a mean X of a sample size n is \/Var(X)/n. When
the distribution of X is unknown, we can substitute for F' the empirical dis-
tribution F;, of the sample x1,...,x,. The “plug-in” estimate of the variance

of X is .
> (i — )%
=1

Note that @”(x) is the population variance of the finite pseudo-population
{z1,...,2,} with cdf F,. The corresponding estimate of the standard error
of T is

Var(z) =

S|

) ) 1/2
@@):{ z]@—jf} .
vn |n—1 P
In a Monte Carlo experiment, the sample size is large and the two estimates
of standard error are approximately equal.
In Example 7.1 the sample size is m (the number of replicates of ), and
the estimate of standard error of 6 is

> sqrt(sum((g - mean(g))~2)) / m
[1] 0.02708121

In Example 7.1 we have the exact value se(d) = \/(2 — 4/7)/m = 0.02695850
for comparison.

7.2.2 Estimation of MSE

Monte Carlo methods can be applied to estimate the MSE of an estima-
tor. Recall that the MSE of an estimator 6 for a parameter 6 is defined by
MSE(0) = E[(f — 0)?]. If m (pseudo) random samples (1), ... (™) are gen-
erated from the distribution of X, then a Monte Carlo estimate of the MSE
of 0 =0(xy,... an) is

— 1
MSE = — (@) — )2
S m§(9 0)2,

Jj=1

where 00) = §(z()) = é(a;gj)’ o ,x%j)),
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Example 7.2 (Estimating the MSE of a trimmed mean). A trimmed mean is
sometimes applied to estimate the center of a continuous symmetric distribu-
tion that is not necessarily normal. In this example, we compute an estimate
of the MSE of a trimmed mean. Suppose that X1,..., X, is a random sample
and X(y),...,X(y,) is the corresponding ordered sample. The trimmed sam-
ple mean is computed by averaging all but the largest and smallest sample
observations. More generally, the k" level trimmed sample mean is defined
by

Obtain a Monte Carlo estimate of the MSE(X|_j) of the first level trimmed
mean assuming that the sampled distribution is standard normal.

In this example, the center of the distribution is 0 and the target parameter
is § = E[X] = E[X[_y)] = 0. We will denote the first level trimmed sample
mean by T. A Monte Carlo estimate of MSE(T') based on m replicates can be

obtained as follows.

1. Generate the replicates TU), j = 1...,m by repeating:

(a) Generate m(]) .. 3353), iid from the distribution of X.
(b) Sort x(]) mgf) in increasing order, to obtain xgjg <... < mgl)).

(¢) Compute TW = L S0 ac(J)
2. Compute Ms\E(T) =Ly (TW) -9 = LY (TW)2,

Then TM ..., T are independent and identically distributed according
to the sampling distribution of the level-1 trimmed mean for a standard normal
distribution, and we are computing the sample mean estimate m(T ) of
MSE(T). This procedure can be implemented by writing a for loop as shown
below (replicate can replace the loop; see R note 7.2.3).

n <- 20

m <- 1000

tmean <- numeric(m)

for (i in 1:m) {
x <- sort(rnorm(n))
tmean[i] <- sum(x[2:(n-1)]) / (n-2)
}

mse <- mean(tmean”2)

> mse

[1] 0.05176437

> sqrt(sum((tmean - mean(tmean))”~2)) / m #se
[1] 0.007193428
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The estimate of MSE for the trimmed mean in this run is approximately
0.052 (s¢ = 0.007). For comparison, the MSE of the sample mean X is
Var(X)/n, which is 1/20 = 0.05 in this example. Note that the median is
actually a trimmed mean; it trims all but one or two of the observations. The
simulation is repeated for the median below.

n <- 20

m <- 1000

tmean <- numeric(m)

for (i in 1:m) {
x <- sort(rnorm(n))
tmean[i] <- median(x)
}

mse <- mean(tmean”2)

> mse

[1] 0.07483438

> sqrt(sum((tmean - mean(tmean))”~2)) / m #se
[1] 0.008649554

The estimate of MSE for the sample median is approximately 0.075 and
Se(MSE) = 0.0086. o

Example 7.3 (MSE of a trimmed mean, cont.). Compare the MSE of level-k
trimmed means for the standard normal and a “contaminated” normal distri-
bution. The contaminated normal distribution in this example is a mixture

pN (0,02 =1) + (1 — p)N(0,0% = 100).

The target parameter is the mean, § = 0. (This example is from [69, 9.7].)

Write a function to estimate MSE(X|_y)) for different k and p. To gen-
erate the contaminated normal samples, first randomly select o according to
the probability distribution P(c = 1) = p; P(0 = 10) = 1 — p. Note that the
normal generator rnorm can accept a vector of parameters for standard devi-
ation. After generating the n values for o, pass this vector as the sd argument
to rnorm (see Examples 3.12 and 3.13).

n <- 20
K <-n/2 -1
m <- 1000

mse <- matrix(0, n/2, 6)

trimmed.mse <- function(n, m, k, p) {
#MC est of mse for k-level trimmed mean of
#contaminated normal pN(0,1) + (1-p)N(0,100)
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tmean <- numeric(m)
for (i in 1:m) {

sigma <- sample(c(1l, 10), size = n,

replace = TRUE, prob = c(p, 1-p))

x <- sort(rnorm(n, 0, sigma))

tmean[i] <- sum(x[(k+1):(n-k)]) / (n-2x*k)

}
mse.est <- mean(tmean~2)
se.mse <- sqrt(mean((tmean-mean(tmean))~2)) / sqrt(m)
return(c(mse.est, se.mse))

}

for (k in 0:K) {
mse[k+1, 1:2] <- trimmed.mse(n=n, m=m, k=k, p=1.0)
mse[k+1, 3:4] <- trimmed.mse(n=n, m=m, k=k, p=.95)
mse[k+1, 5:6] <- trimmed.mse(n=n, m=m, k=k, p=.9)

}

The results of the simulation are shown in Table 7.1. The results in the
table are n times the estimates. This comparison suggests that a robust esti-
mator of the mean can lead to reduced MSE for contaminated normal samples.
o

TABLE 7.1: Estimates of Mean Squared Error for
the k*" Level Trimmed Mean in Example 7.3 (n = 20)

Normal p=0.95 p = 0.90

k nm nse nm nse nm nse
0 0.976 0.140 6.229 0.353 11.485 0.479
1 1.019 0.143 1.954 0.198 4,126 0.287
2 1.009 0.142 1.304 0.161 1.956 0.198
3 1.081 0.147 1.168 0.153 1.578 0.178
4 1.048 0.145 1.280 0.160 1.453 0.170
5
6
7
8
9

1.103 0.149 1.395 0.167 1.423 0.169
1.316 0.162 1.349 0.164 1.574 0.177
1.377 0.166 1.503 0.173 1.734 0.186
1.382 0.166 1.525 0.175 1.694 0.184
1.491 0.172 1.646 0.181 1.843 0.192

7.2.3 Estimating a Confidence Level

One type of problem that arises frequently in statistical applications is the
need to evaluate the cdf of the sampling distribution of a statistic, when the
density function of the statistic is unknown or intractable. For example, many
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commonly used estimation procedures are derived under the assumption that
the sampled population is normally distributed. In practice, it is often the case
that the population is non-normal and in such cases, the true distribution of
the estimator may be unknown or intractable. The following examples illus-
trate a Monte Carlo method to assess the confidence level in an estimation
procedure.

If (U,V) is a confidence interval estimate for an unknown parameter 6,
then U and V are statistics with distributions that depend on the distribution
Fx of the sampled population X. The confidence level is the probability that
the interval (U, V') covers the true value of the parameter 6. Evaluating the
confidence level is therefore an integration problem.

Note that the sample-mean Monte Carlo approaches to evaluating an in-
tegral [ g(z)dx do not require that the function g(z) is specified. It is only
necessary that the sample from the distribution g(X) can be generated. It is
often the case in statistical applications, that g(z) is in fact not specified, but
the variable g(X) is easily generated.

Consider the confidence interval estimation procedure for variance. It is
well known that this procedure is sensitive to mild departures from normality.
We use Monte Carlo methods to estimate the true confidence level when the
normal theory confidence interval for variance is applied to non-normal data.
The classical procedure based on the assumption of normality is outlined first.

Example 7.4 (Confidence interval for variance). If X;,..., X, is a random
sample from a Normal(u, 0?) distribution, n > 2, and S? is the sample vari-
ance, then

(n—1)8?

—— ~X’(n—1). (7.1)

A one side 100(1—a)% confidence interval is given by (0, (n—1)S?/x?2), where
X2 is the a-quantile of the y?(n — 1) distribution. If the sampled population
is normal with variance o2, then the probability that the confidence interval
contains o2 is 1 —a. The calculation of the 95% upper confidence limit (UCL)
for a random sample size n = 20 from a Normal(0,0? = 4) distribution is
shown below.

V:

g

n <- 20

alpha <- .05

x <- rnorm(n, mean=0, sd=2)

UCL <- (n-1) * var(x) / qchisq(alpha, df=n-1)

Several runs produce the upper confidence limits UCL = 6.628, UCL = 7.348,
UCL = 9.621, etc. All of these intervals contain o2 = 4. In this example, the
sampled population is normal with 02 = 4, so the confidence level is exactly

1952 (n—1)8? 9
P >4 =P—= —1) | =0.95.
(X.205(19) g ) < o? > Xos(n )> 09



190 Statistical Computing with R

If the sampling and estimation is repeated a large number of times, approxi-
mately 95% of the intervals based on (7.1) should contain 02, assuming that

the sampled population is normal with variance o2. o

Empirical confidence level is an estimate of the confidence level obtained
by simulation. For the simulation experiment, repeat the steps above a large
number of times, and compute the proportion of intervals that contain the
target parameter.

Monte Carlo experiment to estimate a confidence level

Suppose that X ~ Fx is the random variable of interest and that 6 is the
target parameter to be estimated.

1. For each replicate, indexed j =1,...,m:

(a) Generate the j** random sample, Xl(j)7 N ¢ 2

(b) Compute the confidence interval C; for the j** sample.
(c) Compute y; = I(0 € C;) for the j** sample.

2. Compute the empirical confidence level y = % Z;n:l Y-

The estimator y is a sample proportion estimating the true confidence level
1—a*,s0 Var(y) = (1 — a*)a*/m and an estimate of standard error is se(y) =

V(I =y)y/m.

Example 7.5 (MC estimate of confidence level). Refer to Example 7.4. In
this example we have p = 0, 0 = 2, n = 20, m = 1000 replicates, and
a = 0.05. The sample proportion of intervals that contain o2 = 4 is a Monte
Carlo estimate of the true confidence level. This type of simulation can be
conveniently implemented by using the replicate function.

n <- 20
alpha <- .05
UCL <- replicate(1000, expr = {
x <- rnorm(n, mean = 0, sd = 2)
(n-1) * var(x) / qchisq(alpha, df = n-1)

)
#count the number of intervals that contain sigma™2=4
sum(UCL > 4)

#or compute the mean to get the confidence level
> mean(UCL > 4)
[1] 0.956

The result is that 956 intervals satisfied (UCL > 4), so the empirical confidence
level is 95.6% in this experiment. The result will vary but should be close to
the theoretical value, 95%. The standard error of the estimate is (0.95(1 —
0.95)/1000)"/2 = 0.00689. o
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R Note 7.1

Notice that in the replicate function, the lines to be repeatedly exe-
cuted are enclosed in braces { }. Alternately, the expression argument
(expr) can be a function call:

calcCI <- function(n, alpha) {
y <- rnorm(n, mean = 0, sd = 2)
return((n-1) * var(y) / qchisq(alpha, df = n-1))
}
UCL <- replicate(1000, expr = calcCI(n = 20, alpha = .05))

The interval estimation procedure based on (7.1) for estimating variance
is sensitive to departures from normality, so the true confidence level may be
different than the stated confidence level when data are non-normal. The true
confidence level depends on the cdf of the statistic S?. The confidence level is
the probability that the interval (0, (n — 1)S?/x2) contains the true value of
the parameter o2, which is

o 2 2.2 2.2
P(m QI)S >a2):P<S2>U X“>:1—G(J X“>,
X*q n—1 n—1

where G(-) is the cdf of S2. If the sampled population is non-normal, we have
the problem of estimating the cdf

G(t) = P(S* < ca) = / " gw)de,

where g(z) is the (unknown) density of S? and ¢, = 02x2/(n—1). An approx-
imate solution can be computed empirically using Monte Carlo integration to
estimate G(c,). The estimate of G(t) = P(S? < t) fo x)dx, is computed
by Monte Carlo integration. It is not necessary to have an exphclt formula for
g(x), provided that we can sample from the distribution of g(X).

Example 7.6 (Empirical confidence level). In Example 7.4, what happens if
the sampled population is non-normal? For example, suppose that the sampled
population is x?(2), which has variance 4, but is distinctly non-normal. We
repeat the simulation, replacing the N(0,4) samples with x?(2) samples.

n <- 20

alpha <- .05

UCL <- replicate(1000, expr = {
x <- rchisq(n, df = 2)
(n-1) * var(x) / qchisq(alpha, df = n-1)
)

> sum(UCL > 4)

[1] 773

> mean(UCL > 4)

[1] 0.773
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In this experiment, only 773 or 77.3% of the intervals contained the population
variance, which is far from the 95% coverage under normality. o

Remark 7.1. The problems in Examples 7.1-7.6 are parametric in the sense
that the distribution of the sampled population is specified. The Monte Carlo
approach here is sometimes called parametric bootstrap. The ordinary bootstrap
discussed in Chapter 8 is a different procedure. In “parametric” bootstrap, the
pseudo-random samples are generated from a given probability distribution.
In the “ordinary” bootstrap, the samples are generated by resampling from an
observed sample. Bootstrap methods in this book refer to resampling methods.

Monte Carlo methods for estimation, including several types of bootstrap
confidence interval estimates, are covered in Chapter 8. Bootstrap and jack-
knife methods for estimating the bias and standard error of an estimate are
also covered in Chapter 8. The remainder of this chapter focuses on hypothesis
tests, which are also covered in Chapter 10.

7.3 Monte Carlo Methods for Hypothesis Tests

Suppose that we wish to test a hypothesis concerning a parameter 6 that
lies in a parameter space ©. The hypotheses of interest are

Hy:0€60y vs H;:0€0,

where O and O, partition the parameter space O.

Two types of error can occur in statistical hypothesis testing. A Type I
error occurs if the null hypothesis is rejected when in fact the null hypothesis
is true. A Type II error occurs if the null hypothesis is not rejected when in
fact the null hypothesis is false.

The significance level of a test is denoted by «, and « is an upper bound on
the probability of Type I error. The probability of rejecting the null hypothesis
depends on the true value of 6. For a given test procedure, let w(6) denote the
probability of rejecting Hy. Then

a = sup ().
[ISCH
The probability of Type I error is the conditional probability that the null
hypothesis is rejected given that Hg is true. Thus, if the test procedure is
replicated a large number of times under the conditions of the null hypothesis,
the observed Type I error rate should be at most (approximately) a.

If T is the test statistic and T is the observed value of the test statistic,
then T* is significant if the test decision based on T™ is to reject Hy. The
significance probability or p-value is the smallest possible value of « such that
the observed test statistic would be significant.
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7.3.1 Empirical Type I Error Rate

An empirical Type I error rate can be computed by a Monte Carlo ex-
periment. The test procedure is replicated a large number of times under the
conditions of the null hypothesis. The empirical Type I error rate for the
Monte Carlo experiment is the sample proportion of significant test statistics
among the replicates.

Monte Carlo experiment to assess Type I error rate:
1. For each replicate, indexed by j =1,...,m:
(a) Generate the jt" random sample xgj), . ,at%j)
bution.

from the null distri-

(b) Compute the test statistic T; from the j* sample.

(c) Record the test decision I; = 1 if Hy is rejected at significance level
a and otherwise I; = 0.

2. Compute the proportion of significant tests % Z;nzl I;. This proportion
is the observed Type I error rate.

For the Monte Carlo experiment above, the parameter estimated is a prob-
ability and the estimate, the observed Type I error rate, is a sample proportion.
If we denote the observed Type I error rate by p, then an estimate of se(p) is

S p(1 —p) 0.5
frng _— < _
se(p) m T /m
The procedure is illustrated below with a simple example.

Example 7.7 (Empirical Type I error rate). Suppose that Xi,..., Xog is a
random sample from a N(u,o?) distribution. Test Hg : = 500 Hy : 1 > 500
at a = 0.05. Under the null hypothesis,

X — 500
T = == < #(19),
S/+/20 (19)

where £(19) denotes the Student ¢ distribution with 19 degrees of freedom.
Large values of T support the alternative hypothesis. Use a Monte Carlo
method to compute an empirical probability of Type I error when ¢ = 100,
and check that it is approximately equal to a = 0.05.

The simulation below illustrates the procedure for the case ¢ = 100. The
t-test is implemented by t.test in R, and we are basing the test decisions on
the reported p-values returned by t.test.

n <- 20
alpha <- .05
mu0 <- 500
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sigma <- 100
m <- 10000 #number of replicates
p <- numeric(m) #storage for p-values

for (j in 1:m) {
x <- rnorm(n, muO, sigma)

ttest <- t.test(x, alternative = "greater", mu = mu0)
pljl <- ttest$p.value
}

p.hat <- mean(p < alpha)
se.hat <- sqrt(p.hat * (1 - p.hat) / m)
print(c(p.hat, se.hat))

[1] 0.050600000 0.002191795

The observed Type I error rate in this simulation is 0.0506, and the stan-
dard error of the estimate is approximately /0.05 x 0.95/m = 0.0022. Esti-
mates of Type I error probability will vary, but should be close to the nominal
rate @ = 0.05 because all samples were generated under the null hypothesis
from the assumed model for a t-test (normal distribution). In this experiment
the empirical Type I error rate differs from oo = 0.05 by less than one standard
error.

Theoretically, the probability of rejecting the null hypothesis when . = 500
is exactly a = 0.05 in this example. The simulation really only investigates
empirically whether the method of computing the p-value in t.test (a nu-
merical algorithm) is consistent with the theoretical value o = 0.05. o

One of the simplest approaches to testing for univariate normality is the
skewness test. In the following example, we investigate whether a test based
on the asymptotic distribution of the skewness statistic achieves the nominal
significance level o under the null hypothesis of normality.

Example 7.8 (Skewness test of normality). The skewness /31 of a random
variable X is defined by

N E[(X ;NX)]37

Ox

where px = E[X] and 0% = Var(X). (The notation /B is the classical
notation for the signed skewness coefficient.) A distribution is symmetric if
V/B1 = 0, positively skewed if v/31 > 0, and negatively skewed if /3, < 0.
The sample coefficient of skewness is denoted by /b1, and defined as

_ ari(X =X
Vi = (%Z?:l(lXi —X)2)/2 (7.2)
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(Note that /b; is classical notation for the signed skewness statistic.) If the
distribution of X is normal, then \/b; is asymptotically normal with mean
0 and variance 6/n [64]. Normal distributions are symmetric, and a test for
normality based on skewness rejects the hypothesis of normality for large

values of |/b1|. The hypotheses are

Hy : \/B1 = 0; Hy /B #0,

where the sampling distribution of the skewness statistic is derived under the
assumption of normality.

However, the convergence of 1/b; to its limit distribution is rather slow and
the asymptotic distribution is not a good approximation for small to moderate
sample sizes.

Assess the Type I error rate for a skewness test of normality at o = 0.05
based on the asymptotic distribution of v/b; for sample sizes n = 10, 20, 30,
50, 100, and 500.

The vector of critical values cv for each of the sample sizes n = 10, 20, 30,
50, 100, and 500 are computed under the normal limit distribution and stored
in cv.

n <- c(10, 20, 30, 50, 100, 500) #sample sizes
cv <- gnorm(.975, 0, sqrt(6/mn)) #crit. values for each n

asymptotic critical values:
n 10 20 30 50 100 500
cv 1.5182 1.0735 0.8765 0.6790 0.4801 0.2147

The asymptotic distribution of v/b; does not depend on the mean and
variance of the sampled normal distribution, so the samples can be generated
from the standard normal distribution. If the sample size is n[i] then Hj is
rejected if |v/b1| > cv[il.

First write a function to compute the sample skewness statistic.

sk <- function(x) {
#computes the sample skewness coeff.
xbar <- mean(x)
m3 <- mean((x - xbar)~3)
m2 <- mean((x - xbar)~2)
return( m3 / m271.5 )
}

In the code below, the outer loop varies the sample size n and the inner
loop is the simulation for the current n. In the simulation, the test decisions
are saved as 1 (reject Hy) or 0 (do not reject Hy) in the vector sktests.
When the simulation for n = 10 ends, the mean of sktests gives the sample
proportion of significant tests for n = 10. This result is saved in p.reject [1].
Then the simulation is repeated for n = 20, 30, 50, 100, 500, and saved in
p-reject[2:6].
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#n is a vector of sample sizes
#we are doing length(n) different simulations

p.reject <- numeric(length(n)) #to store sim. results
m <- 10000 #num. repl. each sim.

for (i in 1:length(n)) {
sktests <- numeric(m) #test decisions
for (j in 1:m) {
x <= rnorm(n[il)
#test decision is 1 (reject) or O
sktests[j] <- as.integer(abs(sk(x)) >= cv[i] )
}

p.-reject[i] <- mean(sktests) #proportion rejected

> p.reject
[1] 0.0129 0.0272 0.0339 0.0415 0.0464 0.0539

The results of the simulation are the empirical estimates of Type I error rate
summarized below.

n 10 20 30 50 100 500
estimate 0.0129 0.0272 0.0339 0.0415 0.0464 0.0539

With m = 10000 replicates the standard error of the estimate is approxi-

mately 1/0.05 x 0.95/m = 0.0022.

The results of the simulation suggest that the asymptotic normal approx-
imation for the distribution of /b is not adequate for sample sizes n < 50,
and questionable for sample sizes as large as n = 500. For finite samples one

should use 6( 2)
VetV = G ey

the exact value of the variance [96] (also see [65] or [285]). Repeating the
simulation with

cv <- gnorm(.975, 0, sqrt(6*x(n-2) / ((n+1)*(n+3))))
> round(cv, 4)
[1] 1.1355 0.9268 0.7943 0.6398 0.4660 0.2134

produces the simulation results summarized below:

n 10 20 30 50 100 500
estimate 0.0548 0.0515 0.0543 0.0514 0.0511 0.0479

These estimates are closer to the nominal level o = 0.05. On skewness tests
and other classical tests of normality see [63] or [285]. o
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7.3.2 Power of a Test

In a test of hypotheses Hy vs Hq, a Type II error occurs when H; is true,
but Hp is not rejected. The power of a test is given by the power function
m: © — [0,1], which is the probability () of rejecting Hy given that the
true value of the parameter is 6. Thus, for a given 6, € ©1, the probability of
Type II error is 1 — 7(67). Ideally, we would prefer a test with low probability
of error. Type I error is controlled by the choice of the significance level a.
Low Type II error corresponds to high power under the alternative hypothesis.
Thus, when comparing test procedures for the same hypotheses at the same
significance level, we are interested in comparing the power of the tests. In
general the comparison is not one problem but many; the power 7(6;) of
a test under the alternative hypothesis depends on the particular value of
the alternative 6. For the t-test in Example 7.7, ©; = (500, c0). In general,
however, the set ©; can be more complicated.

If the power function of a test cannot be derived analytically, the power
of a test against a fixed alternative #; € ©; can be estimated by Monte
Carlo methods. Note that the power function is defined for all # € ©, but the
significance level o controls 7(0) < « for all § € ©,.

Monte Carlo experiment to estimate power of a test against a fixed
alternative

1. Select a particular value of the parameter 6; € O.
2. For each replicate, indexed by j =1,...,m:

(a) Generate the j'" random sample xgj), ...,z under the conditions

of the alternative 6 = 0;.

(b) Compute the test statistic T; from the j* sample.

(c) Record the test decision: set I; = 1 if Hy is rejected at significance
level o, and otherwise set I; = 0.

3. Compute the proportion of significant tests #(6;) = L >  I,.

m Laj=1

Example 7.9 (Empirical power). Use simulation to estimate power and plot
an empirical power curve for the t-test in Example 7.7. (For a numerical
approach that does not involve simulation, see the remark below.)

To plot the curve, we need the empirical power for a sequence of alterna-
tives 6 along the horizontal axis. Each point corresponds to a Monte Carlo ex-
periment. The outer for loop varies the points § (mu) and the inner replicate
loop (see R Note 7.2.3) estimates the power at the current 6.

n <- 20
m <- 1000
muQ <- 500

sigma <- 100
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mu <- c(seq(450, 650, 10)) #alternatives
M <- length(mu)
power <- numeric(M)
for (i in 1:M) {
mul <- mul[i]
pvalues <- replicate(m, expr = {
#simulate under alternative mul
x <- rnorm(n, mean = mul, sd = sigma)
ttest <- t.test(x,
alternative = "greater", mu = mu0)
ttest$p.value } )
power[i] <- mean(pvalues <= .05)
}

se <- sqrt(power * (1l-power) / m)

The estimated power 7(6) values are now stored in the vector power. Next,
plot the empirical power curve, adding vertical error bars at #(6) £ 25e(7(9)).
For this type of plot, ggplot makes it easy to add and customize the error
bars.

library(ggplot2)
df <- data.frame(mean=mu, power=power,
upper=power+2*se, lower=power-2*se)
ggplot(df, aes(x=mean, y=power)) +
geom_line() +
geom_vline(xintercept=500, 1lty=2) +
geom_hline(yintercept=c(0,.05), lty=1:2) +
geom_errorbar (aes(ymin=lower, ymax=upper), width = 0.2, lwd=1.5)

The power curve is shown in Figure 7.1. Note that the empirical power
#(0) is small when 6 is close to 6y = 500, and increasing as ¢ moves farther
away from 6y, approaching 1 as 6 — oc. o

Remark 7.2. The noncentral ¢ distribution arises in power calculations for
t-tests. The general noncentral ¢ with parameters (v,0) is defined as the dis-
tribution of T'(v,d) = (Z + 6)//V/v where Z ~ N(0,1) and V ~ x?(v) are
independent.

Suppose X1, Xa, ..., X, is a random sample from a N (u,o?) distribution,
and the t-statistic T = (X — po)/(S/+/n) is applied to test Hy : pn = po. Under
the null hypothesis, T" has the central ¢(n — 1) distribution, but if pu # ug, T
has the non-central ¢ distribution with n — 1 degrees of freedom and non-
centrality parameter § = (u — po)y/n/o. A numerical approach to evaluating
the cdf of the non-central ¢ distribution, based on an algorithm of Lenth [183],
is implemented in the R function pt. Also see power.t.test. o

Example 7.10 (Power of the skewness test of normality). The skewness test
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FIGURE 7.1: Empirical power 7 () £ 25e(7(0)) for the t-test of Hp : 6 = 500
vs. Hy : 6 > 500 in Example 7.9. The horizontal and vertical dashed lines pass
through # = 500 and 7 = 0.05, respectively.

of normality was described in Example 7.8. In this example, we estimate by
simulation the power of the skewness test of normality against a contami-
nated normal (normal scale mixture) alternative described in Example 7.3.
The contaminated normal distribution is denoted by

(1—e)N(u=0,02=1)+eN(u=0,0% = 100), 0<e<l.

When ¢ = 0 or ¢ = 1 the distribution is normal, but the mixture is non-
normal for 0 < € < 1. We can estimate the power of the skewness test for a
sequence of alternatives indexed by e and plot a power curve for the power
of the skewness test against this type of alternative. For this experiment, the
significance level is @ = 0.1 and the sample size is n = 30. The skewness
statistic sk is implemented in Example 7.8.

alpha <- .1
n <- 30
m <- 2500

epsilon <- c(seq(0, .15, .01), seq(.15, 1, .05))

N <- length(epsilon)

pwr <- numeric(N)

#critical value for the skewness test

cv <- gnorm(l-alpha/2, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))

for (j in 1:N) { #for each epsilon
e <- epsilonl[j]
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sktests <- numeric(m)

for (1 in 1:m) { #for each replicate
sigma <- sample(c(1, 10), replace = TRUE,

size = n, prob = c(l-e, e))

x <- rnorm(n, O, sigma)
sktests[i] <- as.integer(abs(sk(x)) >= cv)
}

pwr[j]l <- mean(sktests)

}

se <- sqrt(pwr * (1-pwr) / m)

The results can be summarized in a plot of power vs the mixing probability
. In the ggplot version of the plot we used an alternate version of an error
bar, geom_pointrange, to display the margin of error at each estimate.

library(ggplot2)
df <- data.frame(epsilon=epsilon, power=pwr,
upper=pwr+2*se, lower=pwr-2*se)
ggplot(df, aes(x=epsilon, y=power)) +
geom_line() + labs(x=bquote(epsilon)) +
geom_hline(yintercept=.1, lty=2) +
geom_pointrange (aes(ymin=lower, ymax=upper))

The empirical power curve is shown in Figure 7.2. Note that the power curve
crosses the horizontal line corresponding to @ = 0.10 at both endpoints, € = 0
and € = 1 where the alternative is normally distributed. For 0 < ¢ < 1 the
empirical power of the test is greater than 0.10 and highest when ¢ is about
0.15. o

7.3.3 Power Comparisons

Monte Carlo methods are often applied to compare the performance of
different test procedures. A skewness test of normality was introduced in Ex-
ample 7.8. There are many tests of normality in the literature (see [63] and
[285]). In the following example three tests of univariate normality are com-
pared.

Example 7.11 (Power comparison of tests of normality). Compare the empir-
ical power of the skewness test of univariate normality with the Shapiro-Wilk
[267] test. Also compare the power of the energy test [277], which is based on
distances between sample elements.
Let N denote the family of univariate normal distributions. Then the test
hypotheses are
H()ZFXEN HllFX¢N.

The Shapiro-Wilk test is based on the regression of the sample order statis-
tics on their expected values under normality, so it falls in the general category
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FIGURE 7.2: Empirical power 7 () £25e(7(g)) for the skewness test of nor-
mality against e-contaminated normal scale mixture alternative in Example
7.10. The horizontal line passes through 0.10, the significance level.

of tests based on regression and correlation. The approximate critical values
of the statistic are determined by a transformation of the statistic W to nor-
mality [252, 253, 254] for sample sizes 7 < n < 2000. The Shapiro-Wilk test
is implemented by the R function shapiro.test.

The energy test is based on an energy distance between the sampled distri-
bution and normal distribution, so large values of the statistic are significant.
The energy test is a test of multivariate normality [277], so the test consid-
ered here is the special case d = 1. As a test of univariate normality, energy
performs very much like the Anderson-Darling test [14]. The energy statistic
for testing normality is

2 & 1 <
Qu=n|= > Bllei = X| - EIX - X'| = — > lai—all| . (7.3)
=1

ij=1

where X, X’ are iid. Large values of Q,, are significant. In the univariate case,
the following computing formula is equivalent:

n

Qu=rn |23 (¥ B(¥) +20(v) - % -2 ek nm@] ,
=1 k=1

(7.4)
where Y; = Xiﬂ_x“x , Y(xy is the k" order statistic of the standardized sample,
® is the standard normal cdf and ¢ is the standard normal density. If the
parameters are unknown, substitute the sample mean and sample standard
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deviation to to compute Yi,...,Y,. A computing formula for the multivariate
case is given in [277]. The energy test for univariate and multivariate normality
is implemented in mvnorm.etest in the energy package [237].

The skewness test of normality was introduced in Examples 7.8 and 7.10.
The sample skewness function sk is given in Example 7.8.

For this comparison we set significance level o = 0.1. The example below
compares the power of the tests against the contaminated normal alternatives
described in Example 7.3. The alternative is the normal mixture denoted by

(1—e)N(u=0,02=1)+eN(p=0,0>=100), 0<e<I1.

When € = 0 or € = 1 the distribution is normal, and in this case the empirical
Type I error rate should be controlled at approximately the nominal rate
a =0.1. If 0 < ¢ < 1 the distributions are non-normal, and we are interested
in comparing the empirical power of the tests against these alternatives.

# initialize input and output

library(energy)

alpha <- .1

n <- 30

m <- 2500 #try smaller m for a trial run
epsilon <- .1

testl <- test2 <- test3 <- numeric(m)

#critical value for the skewness test
cv <- gnorm(l-alpha/2, 0, sqrt(6x(n-2) / ((n+1)*(n+3))))

# estimate power
for (j in 1:m) {
e <- epsilon
sigma <- sample(c(1l, 10), replace = TRUE,
size = n, prob = c(l-e, e))
x <- rnorm(n, O, sigma)
testl[j] <- as.integer(abs(sk(x)) >= cv)
test2[j] <- as.integer(
shapiro.test(x)$p.value <= alpha)
test3[j] <- as.integer(
mvnorm.etest(x, R=200)$p.value <= alpha)
}
print(c(epsilon, mean(testl), mean(test2), mean(test3)))
detach(package:energy)

The simulation was repeated for several choices of £ and results saved in
a matrix sim. Simulation results for n = 30 are summarized in Table 7.2 and
in Figure 7.3. The plot is obtained as follows.

# plot the empirical estimates of power
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plot(sim[,1], sim[,2], ylim = c(0, 1), type = "1",
xlab = bquote(epsilon), ylab = "power")

lines(sim[,1], sim[,3], 1ty = 2)

lines(sim[,1], sim[,4], 1ty = 4)

abline(h = alpha, 1ty = 3)

legend("topright", 1, c("skewness", "S-W", "energy"),
1ty = c(1,2,4), inset = .02)

Standard error of the estimates is at most 0.5/y/m = 0.01. Estimates
for empirical Type I error rate correspond to ¢ = 0 and € = 1. All tests
achieve approximately the nominal significance level « = 0.10 within one
standard error. The tests are at approximately the same significance level, so
it is meaningful to compare the results for power.

The simulation results suggest that the Shapiro-Wilk and energy tests are
about equally powerful against this type of alternative when n = 30 and
€ < 0.5. Both have higher power than the skewness test overall and energy
appears to have highest power for 0.5 < e <0.8. o

1.0

— skewness
--- S-W

- energy

0.8
1

0.6
1

power

0.2

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 7.3: Empirical power of three tests of normality against a contam-
inated normal alternative in Example 7.11 (n = 30, o = 0.1, se < 0.01).
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TABLE 7.2: Empirical Power of Three Tests of
Normality against a Contaminated Normal
Alternative in Example 7.11 (n = 30, a = 0.1,

se <0.01)
€ skewness test Shapiro-Wilk energy test
0.00 0.0984 0.1076 0.1064
0.05 0.6484 0.6704 0.6560
0.10 0.8172 0.9008 0.8896
0.15 0.8236 0.9644 0.9624
0.20 0.7816 0.9816 0.9800
0.25 0.7444 0.9940 0.9924
0.30 0.6724 0.9960 0.9980
0.40 0.5672 0.9828 0.9964
0.50 0.4424 0.9112 0.9724
0.60 0.3368 0.7380 0.8868
0.70 0.2532 0.4900 0.6596
0.80 0.1980 0.2856 0.3932
0.90 0.1296 0.1416 0.1724
1.00 0.0992 0.0964 0.0980

7.4 Application: “Count Five” Test for Equal Variance

The examples in this section illustrate the Monte Carlo method for a simple
two-sample test of equal variance.

The two-sample “Count Five” test for equality of variance introduced by
McGrath and Yeh [200] counts the number of extreme points of each sample
relative to the range of the other sample. Suppose the means of the two samples
are equal and the sample sizes are equal. An observation in one sample is
considered extreme if it is not within the range of the other sample. If either
sample has five or more extreme points, the hypothesis of equal variance is
rejected.

Example 7.12 (Count Five test statistic). The computation of the test statis-
tic is illustrated with a numerical example. Compare the side-by-side boxplots
in Figure 7.4 and observe that there are some extreme points in each sample
with respect to the other sample.

x1 <- rnorm(20, 0, sd 1)
x2 <- rnorm(20, 0, sd = 1.5)
y <- c(x1, x2)

group <- rep(1:2, each = length(x1))
boxplot(y ~ group, boxwex = .3, xlim = c(.5, 2.5), main = "")
points(group, y)



Monte Carlo Methods in Inference 205

——
- '
o ‘
o]
——
' @
' Q
o) o
8 8
8
8 s
o - 8 o
8
8 8
' Y
T . @
- o
e
o~
I
o
@ _|

FIGURE 7.4: Boxplots showing extreme points for the Count Five statistic
in Example 7.12.

# now identify the extreme points
> range(x1)

[1] -2.782576 1.728505

> range(x2)

[1] -1.598917 3.710319

> i <- which(xl < min(x2))
> j <~ which(x2 > max(x1))

> x1[i]

[1] -2.782576

> x2[j]

[1] 2.035521 1.809902 3.710319

The Count Five statistic is the maximum number of extreme points, max(1, 3),
so the Count Five test will not reject the hypothesis of equal variance. Note
that we only need the number of extreme points, and the extreme count can
be determined without reference to a boxplot as follows.

outl <- sum(xl > max(x2)) + sum(xl < min(x2))
out2 <- sum(x2 > max(x1)) + sum(x2 < min(x1))
> max(c(outl, out2))

[1] 3

<

Example 7.13 (Count Five test statistic, cont.). Consider the case of two
independent random samples from the same normal distribution. Estimate the
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sampling distribution of the maximum number of extreme points, and find the
0.80, 0.90, and 0.95 quantiles of the sampling distribution.

The function maxout below counts the maximum number of extreme points
of each sample with respect to the range of the other sample. The sampling
distribution of the extreme count statistic can be estimated by a Monte Carlo
experiment.

maxout <- function(x, y) {
X <- x - mean(x)
Y <- y - mean(y)
outx <- sum(X > max(Y)) + sum(X < min(Y))
outy <- sum(Y > max(X)) + sum(Y < min(X))
return(max(c(outx, outy)))

}

nl <- n2 <- 20

mul <- mu2 <- 0
sigmal <- sigma2 <- 1
m <- 1000

# generate samples under HO
stat <- replicate(m, expr={
x <- rnorm(nl, mul, sigmal)
y <- rnorm(n2, mu2, sigma2)
maxout (x, y)
b
print (cumsum(table(stat)) / m)
print(quantile(stat, c(.8, .9, .95)))

The “Count Five” test criterion looks reasonable for normal distributions. The
empirical cdf and quantiles are

1 2 3 4 5 6 7 8 9 10 11
0.149 0.512 0.748 0.871 0.945 0.974 0.986 0.990 0.996 0.999 1.000

80% 90% 95%
4 5 6

Notice that the quantile function gives 6 as the 0.95 quantile. However, if
a = 0.05 is the desired significance level, the critical value 5 appears to be the
best choice. The quantile function is not always the best way to estimate a
critical value. If quantile is used, compare the result to the empirical cdf. ¢

The “Count Five” test criterion can be applied for independent random
samples when the random variables are similarly distributed and sample sizes
are equal. (Random variables X and Y are called similarly distributed if Y has
the same distribution as (X — a)/b where a and b > 0 are constants.) When
the data are centered by their respective population means, McGrath and Yeh
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[200] show that the Count Five test on the centered data has significance level
at most 0.0625.

In practice, the populations means are generally unknown and each sample
would be centered by subtracting its sample mean. Also, the sample sizes may
be unequal.

Example 7.14 (Count Five test). Use Monte Carlo methods to estimate
the significance level of the test when each sample is centered by subtracting
its sample mean. Here again we consider normal distributions. The function
count5test returns the value 1 (reject Hy) or 0 (do not reject Hp).

countbtest <- function(x, y) {
X <- x - mean(x)
Y <- y - mean(y)
outx <- sum(X > max(Y)) + sum(X < min(Y))
outy <- sum(Y > max(X)) + sum(Y < min(X))
# return 1 (reject) or O (do not reject HO)
return(as.integer (max(c(outx, outy)) > 5))

}

nl <- n2 <- 20

mul <- mu2 <- 0

sigmal <- sigma2 <- 1

m <- 10000

tests <- replicate(m, expr = {
x <- rnorm(nl, mul, sigmal)
y <- rnorm(n2, mu2, sigma2)
X <- x - mean(x) #centered by sample mean
y <= y - mean(y)
count5test(x, y)
)

alphahat <- mean(tests)
> print(alphahat)
(1] 0.0565

If the samples are centered by the population mean, we should expect an
empirical Type I error rate of about 0.055, from our previous simulation to
estimate the quantiles of the maxout statistic. In the simulation, each sample
was centered by subtracting the sample mean, and the empirical Type I error
rate was 0.0565 (se = 0.0022). o

Example 7.15 (Count Five test, cont.). Repeating the previous example, we
are estimating the empirical Type I error rate when sample sizes differ and the
“Count Five” test criterion is applied. Each sample is centered by subtracting
the sample mean.

nl <- 20
n2 <- 30
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mul <- mu2 <- 0
sigmal <- sigma2 <- 1
m <- 10000

alphahat <- mean(replicate(m, expr={
x <- rnorm(nl, mul, sigmal)
y <- rnorm(n2, mu2, sigma2)
x <- x - mean(x) #centered by sample mean
y <= y - mean(y)
countbtest (x, y)
19D

print (alphahat)
[1] 0.1064

The simulation result suggests that the “Count Five” criterion does not nec-
essarily control Type I error at a < 0.0625 when the sample sizes are unequal.
Repeating the simulation above with n; = 20 and ns = 50, the empirical Type
I error rate was 0.2934. See [200] for a method to adjust the test criterion for
unequal sample sizes. o

Example 7.16 (Count Five, cont.). Use Monte Carlo methods to estimate
the power of the Count Five test, where the sampled distributions are N (u; =
0,02 = 1), N(uz = 0,03 = 1.5%), and the sample sizes are n; = ny = 20.

# generate samples under Hl1 to estimate power
sigmal <- 1
sigma2 <- 1.5

power <- mean(replicate(m, expr={
x <- rnorm(20, O, sigmal)
y <- rnorm(20, 0, sigma2)
countbtest(x, y)
)

> print (power)
[1] 0.3129

The empirical power of the test is 0.3129 (se < 0.005) against the alterna-
tive (01 = 1, o2 = 1.5) with ny = ny = 20. See [200] for power comparisons
with other tests for equal variance and applications. o
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Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Estimate the MSE of the level k trimmed means for random samples
of size 20 generated from a standard Cauchy distribution. (The target
parameter 6 is the center or median; the expected value does not exist.)
Summarize the estimates of MSE in a table for k =1,2,...,9.

Plot the empirical power curve for the ¢t-test in Example 7.9, changing
the alternative hypothesis to H; : p # 500, and keeping the significance
level oo = 0.05.

Plot the power curves for the t-test in Example 7.9 for sample sizes 10,
20, 30, 40, and 50, but omit the standard error bars. Plot the curves
on the same graph, each in a different color or different line type, and
include a legend. Comment on the relation between power and sample
size.

Suppose that X1, ..., X,, are a random sample from a lognormal distri-
bution. Construct a 95% confidence interval for the parameter u. Use a
Monte Carlo method to obtain an empirical estimate of the confidence
level when data is generated from standard lognormal.

Refer to Example 1.6 (run length encoding). Use simulation to estimate
the probability that the observed maximum run length for the fair coin
flipping experiment is in [9, 11] in a sample size of 1000. Use the results
of your simulation to estimate the standard error of the maximum run
length for this experiment. Suppose that you observed 1000 coin flips
and the maximum run length was 9. Would you suspect that the coin
is unfair? Explain.

Suppose a 95% symmetric t-interval is applied to estimate a mean,
but the sample data are non-normal. Then the probability that the
confidence interval covers the mean is not necessarily equal to 0.95. Use
a Monte Carlo experiment to estimate the coverage probability of the
t-interval for random samples of x?(2) data with sample size n = 20.
Compare your t-interval results with the simulation results in Example
7.4. (The t-interval should be more robust to departures from normality
than the interval for variance.)

Estimate the 0.025, 0.05, 0.95, and 0.975 quantiles of the skewness
v/b1 under normality by a Monte Carlo experiment. Compute the stan-
dard error of the estimates from (2.14) using the normal approxima-
tion for the density (with exact variance formula). Compare the esti-
mated quantiles with the quantiles of the large sample approximation

Vb1 ~ N(0,6/n).

Estimate the power of the skewness test of normality against symmetric
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7.9

7.10
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Beta(a, ) distributions and comment on the results. Are the results
different for heavy-tailed symmetric alternatives such as ¢(v)?

Refer to Example 7.16. Repeat the simulation, but also compute the
F test of equal variance, at significance level & = 0.055. Compare the
power of the Count Five test and F' test for small, medium, and large
sample sizes. (Recall that the F' test is not applicable for non-normal
distributions.)

Let X be a non-negative random variable with y = E[X] < oco. For a
random sample z1,...,x, from the distribution of X, the Gini ratio is

defined by
1 n n
6= g Sl

j=1i=1

The Gini ratio is applied in economics to measure inequality in income
distribution (see, e.g., [168]). Note that G can be written in terms of
the order statistics ;) as

1 &~
G = ?2(21—71— Dz ).

R

If the mean is unknown, let G be the statistic G with u replaced by
z. Estimate by simulation the mean, median and deciles of Gif X is
standard lognormal. Repeat the procedure for the uniform distribution
and Bernoulli(0.1). Also construct density histograms of the replicates
in each case.

Projects

7.A

7.B

Use Monte Carlo simulation to investigate whether the empirical Type I
error rate of the t-test is approximately equal to the nominal significance
level a, when the sampled population is non-normal. The ¢-test is robust
to mild departures from normality. Discuss the simulation results for the
cases where the sampled population is (i) x*(1), (ii) Uniform(0,2), and
(iii) Exponential(rate=1). In each case, test Hy : p = po vs Ho : p #
to, where g is the mean of x2(1), Uniform(0,2), and Exponential(1),
respectively.

Tests for association based on Pearson product moment correlation p,
Spearman’s rank correlation coefficient pg, or Kendall’s coefficient 7, are
implemented in cor.test. Show (empirically) that the nonparametric
tests based on ps or 7 are less powerful than the correlation test when
the sampled distribution is bivariate normal. Find an example of an
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alternative (a bivariate distribution (X,Y") such that X and Y are de-
pendent) such that at least one of the nonparametric tests have better
empirical power than the correlation test against this alternative.

Repeat Examples 7.8 and 7.10 for Mardia’s multivariate skewness test.
Mardia [193] proposed tests of multivariate normality based on multi-
variate generalizations of skewness and kurtosis. If X and Y are iid, the
multivariate population skewness 3 4 is defined by Mardia as

_ 3
Bra=EB[X -p)'E7HY —p)]".
Under normality, 81,4 = 0. The multivariate skewness statistic is

n

ba = o5 3 (X = X)TEHX; - X)), (75)

ij=1

where ¥ is the maximum likelihood estimator of covariance. Large val-
ues of by 4 are significant. The asymptotic distribution of nb; 4/6 is
chisquared with d(d + 1)(d + 2)/6 degrees of freedom.

Repeat Example 7.11 for multivariate tests of normality. Mardia [193]
defines multivariate kurtosis as

Boa = E[(X — )" (X — )]

For d-dimensional multivariate normal distributions the kurtosis coeffi-
cient is B2 ¢ = d(d + 2). The multivariate kurtosis statistic is

bog = % i((xi —X)TSN(X; — X))2 (7.6)

=1

The large sample test of multivariate normality based on by 4 rejects
the null hypothesis at significance level « if

bg)d — d(d + 2) S

VRd(d +2)/n

However, by 4 converges very slowly to the normal limiting distribution.
Compare the empirical power of Mardia’s skewness and kurtosis tests
of multivariate normality with the energy test of multivariate normality
mvnorm.etest (energy) (7.3) [237, 277]. Consider multivariate normal
location mixture alternatives where the two samples are generated from
mlbench.twonorm in the mlbench package [182].

11— a/2).
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Chapter 8

Bootstrap and Jackknife

8.1 The Bootstrap

The bootstrap was introduced in 1979 by Efron [85], with further develop-
ments in 1981 [86, 87], 1982 [88], and numerous other publications including
the monograph of Efron and Tibshirani [91]. Chernick [50] has an extensive
bibliography. Davison and Hinkley [68] is a comprehensive reference with many
applications. Also see Barbe and Bertail [23], Shao and Tu [266], and Mammen
[191].

Bootstrap methods are a class of nonparametric Monte Carlo methods that
estimate the distribution of a population by resampling. Resampling methods
treat an observed sample as a finite population, and random samples are
generated (resampled) from it to estimate population characteristics and make
inferences about the sampled population. Bootstrap methods are often used
when the distribution of the target population is not specified; the sample is
the only information available.

The term “bootstrap” can refer to nonparametric bootstrap or parametric
bootstrap. Monte Carlo methods that involve sampling from a fully specified
probability distribution, such as methods of Chapter 7 are sometimes called
parametric bootstrap. Nonparametric bootstrap is the subject of this chapter.
In nonparametric bootstrap, the distribution is not specified.

The distribution of the finite population represented by the sample can be
regarded as a pseudo-population with similar characteristics as the true popu-
lation. By repeatedly generating random samples from this pseudo-population
(resampling), the sampling distribution of a statistic can be estimated. Prop-
erties of an estimator such as bias or standard error can be estimated by
resampling.

Bootstrap estimates of a sampling distribution are analogous to the idea
of density estimation. We construct a histogram of a sample to obtain an
estimate of the shape of the density function. The histogram is not the density,
but in a nonparametric problem, can be viewed as a reasonable estimate of
the density. We have methods to generate random samples from completely
specified densities; bootstrap generates random samples from the empirical
distribution of the sample.

Suppose that © = (z1,...,x,) is an observed random sample from a dis-
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tribution with cdf F(z). If X* is selected at random from z, then

PX*=ux;)=—, i=1,...,n.

1
n
Resampling generates a random sample X7, ..., X by sampling with replace-
ment from 2. The random variables X are iid, uniformly distributed on the
set {x1,...,2,}.

The empirical distribution function (ecdf) F,,(z) is an estimator of F(x).
It can be shown that F,,(z) is a sufficient statistic for F'(x); that is, all the
information about F'(x) that is contained in the sample is also contained in
F,(z). Moreover, F,(x) is itself the distribution function of a random vari-
able; namely the random variable that is uniformly distributed on the set
{z1,...,2,}. Hence the empirical cdf F;, is the cdf of X*. Thus in bootstrap,
there are two approximations. The ecdf Fj, is an approximation to the cdf Fx.
The ecdf F}, of the bootstrap replicates is an approximation to the ecdf Fi,.
Resampling from the sample z is equivalent to generating random samples
from the distribution F,(x). The two approximations can be represented by
the diagram

F—-X—F,
F, - X*"— F.

To generate a bootstrap random sample by resampling x, generate n ran-
dom integers {i1,...,4,} uniformly distributed on {1,...,n} and select the
bootstrap sample z* = (z;,,...,2;,).

Suppose 6 is the parameter of interest (6 could be a vector), and 0 is an
estimator of #. Then the bootstrap estimate of the distribution of 0 is obtained
as follows.

1. For each bootstrap replicate, indexed b =1,...,B:

(a) Generate sample 2+ = x7, ..., by sampling with replacement
from the observed sample x1, ..., T,.
(b) Compute the b** replicate 6® from the b*" bootstrap sample.

2. The bootstrap estimate of Fj(-) is the empirical distribution of the repli-
cates OV, ..., 9B,

The bootstrap is applied to estimate the standard error and the bias of an
estimator in the following sections. First let us see an example to illustrate the
relation between the ecdf F,, and the distribution of the bootstrap replicates.

Example 8.1 (F,, and bootstrap samples). Suppose that we have observed
the sample
x=1{2,2,1,1,54,4,3,1,2}.
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Resampling from x we select 1, 2, 3, 4, or 5 with probabilities 0.3, 0.3, 0.1,
0.2, and 0.1, respectively, so the cdf F, , of a randomly selected replicate is
exactly the ecdf F,(z):

0, <1
0.3, 1<x <2
0.6, 2 <z <3;

Fyolz) = Fa(z) = o7, 3<a<4;
0.9, 4 <z <5
1, T > 5.

Note that if F}, is not close to F'x then the distribution of the replicates will
not be close to Fx. The sample = above is actually a sample from a Poisson(2)
distribution. Resampling from x a large number of replicates produces a good
estimate of F), but not a good estimate of F'x, because regardless of how many
replicates are drawn, the bootstrap samples will never include 0. o

8.1.1 Bootstrap Estimation of Standard Error

The bootstrap estimate of standard error of an estimator 0 is the sample

~

standard deviation of the bootstrap replicates é(l), ..., 008,

P 1 A
se(6*) = ﬁZ(W’) — 0%)2, (8.1)
b=1
where §* = L S0 00 (91, (6.6)].

According to Efron and Tibshirani [91, p. 52], the number of replicates
needed for good estimates of standard error is not large; B = 50 is usually
large enough, and rarely is B > 200 necessary. (Much larger B will be needed
for confidence interval estimation.)

Example 8.2 (Bootstrap estimate of standard error). The law school data
set law in the bootstrap [286] package is from Efron and Tibshirani [91]. The
data frame contains LSAT (average score on law school admission test score)
and GPA (average undergraduate grade point average) for 15 law schools.

LSAT 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594
GPA 339 330 281 303 344 307 300 343 336 313 312 274 276 288 296

This data set is a random sample from the universe of 82 law schools in 1aw82
(bootstrap). Estimate the correlation between LSAT and GPA scores, and
compute the bootstrap estimate of the standard error of the sample correla-
tion.
1. For each bootstrap replicate, indexed b=1,..., B:
(a) Generate sample 2+ = x7,..., 2z, by sampling with replacement
from the observed sample x1, ..., Z,.
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(b) Compute the bt" replicate ) from the b*" bootstrap sample, where
0 is the sample correlation R between (LSAT, GPA).

2. The bootstrap estimate of se(R) is the sample standard deviation of
the replicates 01, ..., 0B) = RW  R(B),

library(bootstrap) #for the law data
print (cor (1aw$LSAT, law$GPA))

[1] 0.7763745

print (cor(1aw82$LSAT, 1aw82$GPA))

[1] 0.7599979

The sample correlation is R = 0.7763745. The correlation for the universe of
82 law schools is R = 0.7599979. Use bootstrap to estimate the standard error
of the correlation statistic computed from the sample of scores in law.

#set up the bootstrap

B <- 200 #number of replicates
n <- nrow(law) #sample size
R <- numeric(B) #storage for replicates

#bootstrap estimate of standard error of R
for (b in 1:B) {
#randomly select the indices
i <- sample(l:n, size = n, replace = TRUE)
LSAT <- law$LSAT[i] #i is a vector of indices
GPA <- law$GPA[i]
R[b] <- cor(LSAT, GPA)
}
#output
> print(se.R <- sd(R))
[1] 0.1358393
> hist(R, prob = TRUE)

The bootstrap estimate of se(R) is 0.1358393. The normal theory estimate
for standard error of R is 0.115. The jackknife-after-bootstrap method of es-

timating se(Se(f)) is covered in Section 9.1. The histogram of the replicates
of R is shown in Figure 8.1. o

In the next example, the boot function in recommended package boot [36]
is applied to run the bootstrap.

Example 8.3 (Bootstrap estimate of standard error: boot function). Exam-
ple 8.2 is repeated, using the boot function in boot. First, write a function
that returns é(b), where the first argument to the function is the sample data,
and the second argument is the vector {i1,...,4,} of indices. If the data is x
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and the vector of indices is i, we need x[i,1] to extract the first resampled
variable, and x[i,2] to extract the second resampled variable. The code and
output is shown below.

r <- function(x, i) {
#want correlation of columns 1 and 2
cor (x[i,1], x[i,2])

}

The printed summary of output from the boot function is obtained by the
command boot or the result can be saved in an object for further analysis.
Here we save the result in obj and print the summary.

library(boot) #for boot function
> obj <- boot(data = law, statistic = r, R = 2000)
> obj

ORDINARY NONPARAMETRIC BOOTSTRAP

Call: boot(data = law, statistic = r, R = 2000)
Bootstrap Statistics :

original bias std. error
tl* 0.7763745 -0.004795305 0.1303343

The observed value 6 of the correlation statistic is labeled t1*. The bootstrap

estimate of standard error of the estimate is $e(d) = 0.13, based on 2000
replicates. To compare with formula (8.1), extract the replicates in $t.

> y <- obj$t
> sd(y)
[1] 0.1303343

R Note 8.1

The syntax and options for the boot (boot) function and the
bootstrap (bootstrap) function are different. Note that the
bootstrap package [286] is a collection of functions and data for the
book by Efron and Tibshirani [91], and the boot package [36] is a
collection of functions and data for the book by Davison and Hinkley
[68].

8.1.2 Bootstrap Estimation of Bias

If § is an unbiased estimator of 6, E[f] = 6. The bias of an estimator 8 for
6 is

~

bias(f) = E[0 — 6] = E[0] — 6.
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Histogram of R

Density

FIGURE 8.1: Bootstrap replicates for law school data in Example 8.2.

Thus, every statistic is an unbiased estimator of its expected value, and in
particular, the sample mean of a random sample is an unbiased estimator of
the mean of the distribution. An example of a biased estimator is the maximum
likelihood estimator of variance, 62 = +¥"  (X; — X)?, which has expected
value (1 — 1/n)o?. Thus, 42 underestimates o, and the bias is —a2/n.

The bootstrap estimation of bias uses the bootstrap replicates of 0 to esti-
mate the sampling distribution of 6. For the finite population x = (z1,...,z,),
the parameter is é(x) and there are B independent and identically distributed
estimators 8®). The sample mean of the replicates {#")} is unbiased for its
expected value E[é*], so the bootstrap estimate of bias is

— A

bias(6) = 6% — 0, (8.2)

where 0% = + Zle 0" and § = A(x) is the estimate computed from the
original observed sample. (In bootstrap F), is sampled in place of Fx, so we
replace 6 with 0 to estimate the bias.) Positive bias indicates that 6 on average
tends to overestimate 6.

Example 8.4 (Boostrap estimate of bias). In the law data of Example 8.2,
compute the bootstrap estimate of bias in the sample correlation.

#sample estimate for n=15
theta.hat <- cor(law$LSAT, law$GPA)

#bootstrap estimate of bias

B <- 2000 #larger for estimating bias
n <- nrow(law)

theta.b <- numeric(B)

for (b in 1:B) {
i <- sample(l:n, size = n, replace = TRUE)
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LSAT <- law$LSATI[i]

GPA <- law$GPA[i]

theta.b[b] <- cor(LSAT, GPA)
}
bias <- mean(theta.b - theta.hat)
> bias
[1] -0.005797944

The estimate of bias is -0.005797944. Note that this is close to the estimate
of bias returned by the boot function in Example 8.3. See Section 9.1 for
the jackknife-after-bootstrap method to estimate the standard error of the
bootstrap estimate of bias. o

Example 8.5 (Bootstrap estimate of bias of a ratio estimate). The patch
(bootstrap) data from Efron and Tibshirani [91, 10.3] contains measure-
ments of a certain hormone in the bloodstream of eight subjects after wearing
a medical patch. The parameter of interest is

0— E(new) — E(old)
~ E(old) — E(placebo)’

If |0] < 0.20, this indicates bioequivalence of the old and new patches. The
statistic is Y /Z. Compute a bootstrap estimate of bias in the bioequivalence
ratio statistic.

data(patch, package = "bootstrap")

> patch

subject placebo oldpatch newpatch z y
1 1 9243 17649 16449 8406 -1200
2 2 9671 12013 14614 2342 2601
3 3 11792 19979 17274 8187 -2705
4 4 13357 21816 23798 8459 1982
5 5 9055 13850 12560 4795 -1290
6 6 6290 9806 10157 3516 351
7 7 12412 17208 16570 4796 -638
8 8 18806 29044 26325 10238 -2719

n <- nrow(patch) #in bootstrap package

B <- 2000

theta.b <- numeric(B)

theta.hat <- mean(patch$y) / mean(patch$z)

#bootstrap
for (b in 1:B) {
i <- sample(l:n, size = n, replace = TRUE)
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y <- patch$yl[il
z <- patch$z[i]
theta.b[b] <- mean(y) / mean(z)
}
bias <- mean(theta.b) - theta.hat
se <- sd(theta.b)
print (list(est=theta.hat, bias = bias,
se = se, cv = bias/se))

$est [1] -0.0713061
$bias [1] 0.007901101
$se [1] 0.1046453
$cv [1] 0.07550363

If |bias|/se < 0.25, it is not usually necessary to adjust for bias [91, Sec-
tion 10.3]. The bias is small relative to standard error (cv < 0.08), so in this
example it is not necessary to adjust for bias. o

8.2 The Jackknife

The jackknife is another resampling method, proposed by Quenouille [225,
224] for estimating bias, and by Tukey [289] for estimating standard error, a
few decades earlier than the bootstrap. Efron [88] is a good introduction to
the jackknife.

The jackknife is like a “leave-one-out” type of cross-validation. Let x =
(x1,...,2,) be an observed random sample, and define the i*" jackknife sample
x(;) to be the subset of z that leaves out the i*" observation z;. That is,

L) = (T1y oo i1, T 1y e o5 T

If § = T,,(x), define the i*" jackknife replicate é(i) =Th1(x)), i =1,...,n.

Suppose the parameter 6 = ¢(F) is a function of the distribution F'. Let
F),, be the ecdf of a random sample from the distribution F'. The “plug-in”
estimate of 6 is § = ¢(F,). A “plug-in” @ is smooth in the sense that small
changes in the data correspond to small changes in 0. For example, the sample
mean is a plug-in estimate for the population mean, but the sample median
is not a plug-in estimate for the population median.

The Jackknife Estimate of Bias

If 6 is a smooth (plug-in) statistic, then é(i) = t(Fn-1(z(;))), and the
jackknife estimate of bias is

—

biasjaek = (n—1)( 0y —0), (8.3)
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A~

where é(_) = L3" 6 is the mean of the estimates from the leave-one-out
0 =

=1
samples, and é(JL‘) is the estimate computed from the original observed
sample.
To see why the jackknife estimator (8.3) has the factor n — 1, consider the
case where 6 is the population variance. If z4, ..., z, is a random sample from

the distribution of X, the plug-in estimate of the variance of X is

The estimator 0 is biased for 0% with

. A -1 2
bias(@) = B[l —o%] = 1 "0% — 0% = - 2X
n

Each jackknife replicate computes the estimate é(i) on a sample size n — 1, so
that the bias in the jackknife replicate is —0%/(n —1). Thus, for i = 1,...,n
we have

A

Elf) — 0] = El0i) — 0] — E[0 — 0]
= bias(é(i)) — bias(f)
_ o3 _(_U%():_ 0% _ bias(d)
n(

n—1 n o

n—1) n—1"

Thus, the jackknife estimate (8.3) with factor (n — 1) gives the correct esti-
mate of bias in the plug-in estimator of variance, which is also the maximum
likelihood estimator of variance.

R Note 8.2 leave-one-out

The [ ] operator provides a very simple way to leave out the i*" ele-
ment of a vector.

x <- 1:5
for (i in 1:5)
print (x[-il)

[11 2345
[11 1345
(11 1245
[11 1235
(11 1234

Note that the jackknife requires only n replications to estimate the bias;
the bootstrap estimate of bias typically requires several hundred replicates.



222 Statistical Computing with R

Example 8.6 (Jackknife estimate of bias). Compute the jackknife estimate
of bias for the patch data in Example 8.5.

data(patch, package = "bootstrap")
n <- nrow(patch)

y <- patch$y

z <- patch$z

theta.hat <- mean(y) / mean(z)
print (theta.hat)

#compute the jackknife replicates, leave-one-out estimates
theta. jack <- numeric(n)
for (i in 1:n)
theta.jack[i] <- mean(y[-i]) / mean(z[-il])
bias <- (n - 1) * (mean(theta.jack) - theta.hat)

> print(bias) #jackknife estimate of bias
[1] 0.008002488

©
The jackknife estimate of standard error
A jackknife estimate of standard error [289], [91, Equation (11.5)] is
=N n—1x< A~ =\ 2
S€jack = n Z (Q(i) - 3(.) ) 5 (8.4)

i=1

for smooth statistics 6.

To see why the jackknife estimator of standard error (8.4) has the factor
(n — 1)/n, consider the case where 6 is the population mean and 0 = X. The
standard error of the mean of X is \/Var(X)/n. A factor of (n —1)/n under
the radial makes 540, an unbiased estimator of the standard error of the
mean.

We can also consider the plug-in estimate of the standard error of the
mean. In the case of a continuous random variable X, the plug-in estimate of
the variance of a random sample is the variance of Y, where Y is uniformly
distributed on the sample zy,...,x,. That is,

Var(Y)

%E[Y —E[Y])? = %E[Y - X2

1 & — 1
- X, —X)? =
n K= XP

n—1_4 n—1 —
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Thus, for the jackknife estimator of standard error, a factor of ((n — 1)/n)?
gives the plug-in estimate of variance. The factors ((n—1)/n)? and ((n—1)/n)
are approximately equal if n is not small. Efron and Tibshirani [91] remark
that the choice of the factor (n — 1)/n instead of ((n — 1)/n)? is somewhat
arbitrary.

Example 8.7 (Jackknife estimate of standard error). To compute the jack-
knife estimate of standard error for the patch data in Example 8.5, use the
jackknife replicates from Example 8.6.

se <- sqrt((n-1) *

mean((theta.jack - mean(theta.jack)) 2))
> print(se)
[1] 0.1055278

The jackknife estimate of standard error is 0.1055278. From the previous result
for the bias, we have the estimated coefficient of variation

> .008002488/.1055278
[1] 0.07583298

When the Jackknife Fails

The jackknife can fail when the statistic 6 is not “smooth.” The statistic
is a function of the data. Smoothness means that small changes in the data
correspond to small changes in the statistic. The median is an example of a
statistic that is not smooth.

Example 8.8 (Failure of jackknife). In this example the jackknife estimate of
standard error of the median is computed for a random sample of 10 integers
from 1, 2 ..., 100.

n <- 10
x <- sample(1:100, size = n)

#jackknife estimate of se

M <- numeric(n)

for (1 in 1:n) { #leave one out
y <= x[-i]
M[i] <- median(y)

}

Mbar <- mean(M)

print(sqrt((n-1)/n * sum((M - Mbar)~2)))

#bootstrap estimate of se
Mb <- replicate(1000, expr = {
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y <- sample(x, size = n, replace = TRUE)
median(y) })

print (sd(Mb))

# details and results:

# the sample, x: 29 79 41 86 91 5 50 83 51 42
# jackknife medians: 51 50 51 50 50 51 51 50 50 51
# jackknife est. of se: 1.5

# bootstrap medians: 46 50 46 79 79 51 81 65 ...

# bootstrap est. of se: 13.69387

Clearly something is wrong here, because the bootstrap estimate and the
jackknife estimate are far apart. The jackknife fails because the median is not
smooth. o

In this case, when the statistic is not smooth, the delete-d jackknife (leave
d observations out on each replicate) can be applied (see Efron and Tibshirani
[91, Section 11.7]). If v/n/d — 0 and n — d — oo, then the delete-d jackknife
is consistent for the median. The computing time increases because there are
a large number of jackknife replicates when n and d are large.

8.3 Bootstrap Confidence Intervals

In this section, several approaches to obtaining approximate confidence
intervals for the target parameter in a bootstrap are discussed. The methods
include the standard normal bootstrap confidence interval, the basic bootstrap
confidence interval, the bootstrap percentile confidence interval, and the boot-
strap t confidence interval. The ‘better bootstrap confidence interval’ BC,, is
also discussed. Readers are referred to [68] and [91] for theoretical properties
and discussion of empirical performance of methods for bootstrap confidence
interval estimates. See also [75] and [90].

8.3.1 The Standard Normal Bootstrap Confidence Interval

The standard normal bootstrap confidence interval is the simplest ap-
proach, but not necessarily the best. Suppose that 0 is an estimator of pa-
rameter 0, and assume the standard error of the estimator is se(f). If 0 is a
sample mean and the sample size is large, then the Central Limit Theorem
implies that
0 — E[0]

Z = ~
se(6)

(8.5)
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is approximately standard normal. Hence, if 0 is unbiased for 0, then an ap-
proximate 100(1 — )% confidence interval for 6 is the Z-interval

0+ zoé/gzse(é)7

where z, /2 = ®7'(1 — «/2). This interval is easy to compute, but we have
made several assumptions. To apply the normal distribution, we assume that
the distribution of 6 is normal or 6 is a sample mean and the sample size is
large. We have also implicitly assumed that 0 is unbiased for 6.

Bias can be estimated and used to center the Z statistic, but the estimator
is a random variable, so the transformed variable is not normal. Here we have
treated se(f) as a known parameter, but in the bootstrap se(f) is estimated
(the sample standard deviation of the replicates).

8.3.2 The Basic Bootstrap Confidence Interval

The basic bootstrap confidence interval or pivotal CI transforms the dis-
tribution of the replicates by subtracting the observed statistic. The quantiles
of the transformed sample 6* — § are used to determine the confidence limits.

The 100(1 — )% confidence limits for the basic bootstrap confidence in-
terval are o

(29 01 /2 20 76;/2)7 (8'6)

where éz denotes the a sample quantile of the bootstrap replicates 6*.

The derivation of the confidence limits in (8.6) follows. Suppose that a
simple random sample 1, ..., , is observed and statistic § = é(a:l, ceeyTy)
is an estimator of parameter # of the sampled distribution. Assume that we
have B replicates 6* from an ordinary bootstrap.

For a symmetric 100(1 — a))% confidence interval (L, U) for 6 based on the
bootstrap replicates, we require that

Pr(L > 0) = Pr(U < 0) = a/2.

Then

0)
L).

Solving this expression we see that L — 6 should be the 1 — a/2 percentile
of 8 — 0. These exact percentiles are unknown, but one can estimate them
from the bootstrap replicates. Find 9’{70‘/2, the 1 — a/2 sample quantile of the

a/2 =Pr(L>0)=Pr(L—0>
0 <

>0 -
Prif—60<6-

bootstrap replicates 6*. Then é* /2 —fis approximately equal to the 1 —a/2
quantile of & — 6. Set § — L = 9; a2 —0-
Similarly, solving o/2 = Pr(U < 6) leads to the estimate § — U = éZ/Q —4.
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Finally, the basic bootstrap confidence interval is
(LU) = (20— 07,5, 20—07,,).

Thus, a 100(1 — «) basic bootstrap confidence interval for 8 is given by
(8.6). See Davison and Hinkley [68, Section 5.2] for more details.

8.3.3 The Percentile Bootstrap Confidence Interval

A bootstrap percentile interval uses the empirical distribution of the boot-
strap replicates as the reference distribution. The quantiles of the empirical
distribution are estimators of the quantiles of the sampling distribution of é,
so that these (random) quantiles may match the true distribution better when
the distribution of # is not normal. Suppose that é(l), ey 6(B) are the boot-
strap replicates of the statistic 6. From the ecdf of the replicates, compute the
a/2 quantile éa/Q, and the 1 — /2 quantile él_a/z.

Efron and Tibshirani [91, 13.3] show that the percentile interval has some
theoretical advantages over the standard normal interval and somewhat better
coverage performance.

Adjustments to percentile methods have been proposed. For example, the
bias-corrected and accelerated (BCa) percentile intervals (see Section 8.4) are a
modified version of percentile intervals that have better theoretical properties
and better performance in practice.

The boot.ci (boot) function [36] computes five types of bootstrap con-
fidence intervals: basic, normal, percentile, studentized, and BCa. To use this
function, first call boot for the bootstrap, and pass the returned boot ob-
ject to boot.ci (along with other required arguments). For more details, see
Davison and Hinkley [68, Chapter 5] and the boot.ci help topic.

Example 8.9 (Bootstrap confidence intervals for patch ratio statistic). This
example illustrates how to obtain the normal, basic, and percentile bootstrap
confidence intervals using the boot and boot.ci functions in the boot pack-
age. The code generates 95% confidence intervals for the ratio statistic in
Example 8.5.

library (boot) #for boot and boot.ci
data(patch, package = "bootstrap")

theta.boot <- function(dat, ind) {
#function to compute the statistic
y <- dat[ind, 1]
z <- dat[ind, 2]
mean(y) / mean(z)

}

Run the bootstrap and compute confidence interval estimates for the bioe-
quivalence ratio.
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y <- patch$y

z <- patch$z

dat <- cbind(y, z)

boot.obj <- boot(dat, statistic = theta.boot, R = 2000)

The output for the bootstrap and bootstrap confidence intervals is below.

print (boot.obj)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call: boot(data = dat, statistic = theta.boot, R = 2000)
Bootstrap Statistics :
original bias std. error
tlx -0.0713061 0.01047726  0.1010179

print (boot.ci(boot.obj,
type = c("basic", "norm", "perc")))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL : boot.ci(boot.out = boot.obj, type = c("basic",
"norm", "perc"))
Intervals :
Level Normal Basic Percentile
95% (-0.2798, 0.1162 ) (-0.3045, 0.0857 ) (-0.2283, 0.1619 )
Calculations and Intervals on Original Scale

Recall that the old and new patches are bioequivalent if |#] < 0.20. Hence, the
interval estimates do not support bioequivalence of the old and new patches.
Next we compute the bootstrap confidence intervals according to their defini-
tions. Compare the following results with the boot.ci output.

#calculations for bootstrap confidence intervals
alpha <- ¢(.025, .975)

#normal
print(boot.obj$t0 + gnorm(alpha) * sd(boot.obj$t))
-0.2692975 0.1266853

#basic
print (2*boot.obj$t0 -
quantile(boot.obj$t, rev(alpha), type=1))
97.5% 2.5%
-0.3018698 0.0857679

#percentile
print(quantile(boot.obj$t, alpha, type=6))
2.5% 97.5%
-0.2283370 0.1618647
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R Note 8.3

The normal interval computed by boot.ci corrects for bias. Notice
that the boot.ci normal interval differs from our result by the bias
estimate shown in the output from boot. This is confirmed by read-
ing the source code for the function. To view the source code for
this calculation, when the boot package is loaded, enter the command
getAnywhere (norm.ci) at the console. Also see norm.inter and [68]
for details of calculations of quantiles.

Example 8.10 (Bootstrap confidence intervals for the correlation statis-
tic). Compute 95% bootstrap confidence interval estimates for the correlation
statistic in the law data of Example 8.2.

library(boot)
data(law, package = "bootstrap")
boot.obj <- boot(law, R = 2000,
statistic = function(x, i){cor(x[i,1], x[i,21)})
print (boot.ci(boot.obj, type=c("basic","norm","perc")))

Intervals :

Level Normal Basic Percentile
95% (0.5182, 1.0448) (0.5916, 1.0994) (0.4534, 0.9611)
Calculations and Intervals on Original Scale

All three intervals cover the correlation p = .76 of the universe of all law
schools in 1aw82. One reason for the difference in the percentile and normal
confidence intervals could be that the sampling distribution of correlation
statistic is not close to normal (see the histogram in Figure 8.1). When the
sampling distribution of the statistic is approximately normal, the percentile
interval will agree with the normal interval. o

8.3.4 The Bootstrap ¢ Interval

Even if the distribution of 6 is normal and @ is unbiased for 6, the normal
distribution is not exactly correct for the Z statistic (8.5), because we estimate

se(#). Nor can we claim that it is a Student ¢ statistic, because the distribution
of the bootstrap estimator §e(6) is unknown. The bootstrap ¢ interval does not
use a Student ¢ distribution as the reference distribution. Instead, the sampling
distribution of a “t type” statistic (a studentized statistic) is generated by

resampling. Suppose © = (21, ..., 2, ) is an observed sample. The 100(1 —a)%
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bootstrap ¢ confidence interval is
(0 —t7_op8e0), 0 —1t555e(0)),
where s/\e(é), tz/z and t’lkfoé/2 are computed as outlined below.

Bootstrap ¢ interval (studentized bootstrap interval)

1. Compute the observed statistic 0.
2. For each replicate, indexed b= 1, ..., B:

(a) Sample with replacement from z to get the b*" sample
z® = (acgb), .. ,a:,(lb)).
(b) Compute §® from the b sample z(®).
(c) Compute or estimate the standard error 5e(6() (a separate esti-

mate for each bootstrap sample; a bootstrap estimate will resample
from the current bootstrap sample z(*), not x).

(d) Compute the b*" replicate of the “t” statistic, t(*) = %.
se
3. The sample of replicates ¢, ... t(B) is the reference distribution for
bootstrap ¢. Find the sample quantiles ¢, /2 and t]_ /2 from the ordered

sample of replicates ¢(®).
4. Compute §e(é), the sample standard deviation of the replicates 6.

5. Compute confidence limits
(0 —t7_ o j25¢(0), 0 — 17, 552(0)).

One disadvantage to the bootstrap t interval is that typically the estimates
of standard error sAe(HA(b)) must be obtained by bootstrap. This is a bootstrap
nested inside a bootstrap. If B = 1000, for example, the bootstrap ¢ confidence
interval method takes approximately 1000 times longer than any of the other
methods.

Example 8.11 (Bootstrap t confidence interval). This example provides a
function to compute a bootstrap ¢ confidence interval for a univariate or a
multivariate sample. The required arguments to the function are the sample
data x, and the function statistic that computes the statistic. The default
confidence level is 95%, the number of bootstrap replicates defaults to 500,
and the number of replicates for estimating standard error defaults to 100.

boot.t.ci <-

function(x, B = 500, R = 100, level = .95, statistic){
#compute the bootstrap t CI
x <- as.matrix(x); n <- nrow(x)
stat <- numeric(B); se <- numeric(B)
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boot.se <- function(x, R, f) {
#local function to compute the bootstrap
#estimate of standard error for statistic f(x)
x <- as.matrix(x); m <- nrow(x)
th <- replicate(R, expr = {
i <- sample(l:m, size = m, replace = TRUE)
f(x[i, 1
B
return(sd(th))

for (b in 1:B) {
j <- sample(l:n, size = n, replace = TRUE)
y <= x[j, 1
stat[b] <- statistic(y)
se[b] <- boot.se(y, R = R, f = statistic)
}
stat0 <- statistic(x)
t.stats <- (stat - stat0) / se
se0 <- sd(stat)
alpha <- 1 - level
Qt <- quantile(t.stats, c(alpha/2, 1-alpha/2), type = 1)
names (Qt) <- rev(names(Qt))
CI <- rev(statO0 - Qt * se0)
}

Note that the boot.se function is a local function, visible only inside the
boot.t.ci function. The next example applies the boot.t.ci function. o

Example 8.12 (Bootstrap ¢ confidence interval for patch ratio statistic.).
Compute a 95% bootstrap t confidence interval for the ratio statistic in Ex-
amples 8.5 and 8.9.

dat <- cbind(patch$y, patch$z)
stat <- function(dat) {
mean(dat[, 1]) / mean(dat[, 2]) }
ci <- boot.t.ci(dat, statistic = stat, B=2000, R=200)
print(ci)

2.5% 97.5Y%
-0.2547932 0.4055129

The upper confidence limit of the bootstrap t confidence interval is much
larger than the three intervals in Example 8.9 and the bootstrap ¢ is the
widest interval in this example. o
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8.4 Better Bootstrap Confidence Intervals

Better bootstrap confidence intervals (see [91, Section 14.3]) are a modi-
fied version of percentile intervals that have better theoretical properties and
better performance in practice. For a 100(1 — «)% confidence interval, the
usual a/2 and 1 — /2 quantiles are adjusted by two factors: a correction for
bias and a correction for skewness. The bias correction is denoted zy and the
skewness or “acceleration” adjustment is a. The better bootstrap confidence
interval is called BCa for “bias corrected” and “adjusted for acceleration.”

For a 100(1 — «)% BCa bootstrap confidence interval compute

. 20 + Zay/2
— 9 _ 0T P2 8.7
o (m 1_&(20+Za/2)>, (8.7)

20 + 21-a/2 )
L —a(Z0 + 21-a/2)

an = ® <20 + (8.8)

where z, = ®71(a), and 2, G are given by equations (8.9) and (8.10) below.
The BCa interval is A
(0,07 ).

Q1) ag

The upper and lower confidence limits of the BCa confidence interval are the
empirical a; and as quantiles of the bootstrap replicates.

The bias correction factor is in effect measuring the median bias of the
replicates * for 6. The estimate of this bias is

B
1 ~ ~
20 =1 (B > 16" < o)) , (8.9)
b=1

where I(-) is the indicator function. Note that 2y = 0 if 6 is the median of the
bootstrap replicates.
The acceleration factor is estimated from jackknife replicates:
w00 — 03
a= an—l(i> ) 7 (8.10)
6 3271 (00) — 00»)?]

which measures skewness.

Other methods for estimating the acceleration have been proposed (see,
e.g., Shao and Tu [266]). Formula (8.10) is given by Efron and Tibshirani [91,
p. 186]. The acceleration factor @ is so named because it estimates the rate
of change of the standard error of 0 with respect to the target parameter 6
(on a normalized scale). When we use a standard normal bootstrap confidence
interval, we suppose that 6 is approximately normal with mean 6 and con-
stant variance 02(§) that does not depend on the parameter 6. However, it is
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not always true that the variance of an estimator has constant variance with
respect to the target parameter. Consider, for example, the sample propor-
tion p = X/n as an estimator of the probability of success p in a binomial
experiment, which has variance p(1 — p)/n. The acceleration factor aims to
adjust the confidence limits to account for the possibility that the variance of
the estimator may depend on the true value of the target parameter.

Properties of BCa intervals

There are two important theoretical advantages to BCa bootstrap confi-
dence intervals. The BCa confidence intervals are transformation respecting
and BCa intervals have second order accuracy.

Transformation respecting means that if (é}; L é; ,) is a confidence interval
for 0, and ¢(#) is a transformation of the parameter 4, then the corresponding
interval for t(0) is ((9% s (0% ,))- A confidence interval is first order accurate
if the error tends to zero at rate 1/4/n for sample size n, and second order
accurate if the error tends to zero at rate 1/n.

The bootstrap t confidence interval is second order accurate but not trans-
formation respecting. The bootstrap percentile interval is transformation re-
specting but only first order accurate. The standard normal confidence in-
terval is neither transformation respecting nor second order accurate. See [68]
for discussion and comparison of theoretical properties of bootstrap confidence
intervals.

Example 8.13 (BCa bootstrap confidence interval). This example imple-
ments a function to compute a BCa confidence interval. The BCa interval is
(0%,,0%,), where 0, and 0}, are given by equations (8.7)-(8.10). S

a1 Y as
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boot.BCa <-
function(x, thO, th, stat, conf = .95) {
# bootstrap with BCa bootstrap confidence interval
# thO is the observed statistic
# th is the vector of bootstrap replicates
# stat is the function to compute the statistic

x <- as.matrix(x)

n <- nrow(x) #observations in rows
N <- 1:n

alpha <- (1 + c(-conf, conf))/2
zalpha <- gnorm(alpha)

# the bias correction factor
z0 <- gnorm(sum(th < th0) / length(th))

# the acceleration factor (jackknife est.)
th. jack <- numeric(n)
for (i in 1:n) {
J <= N[1: (n-1)]
th.jack[i] <- stat(x[-i, 1, J)
}
L <- mean(th.jack) - th.jack
a <- sum(L"3)/(6 * sum(L"2)71.5)

# BCa conf. limits

adj.alpha <- pnorm(z0 + (z0O+zalpha)/(1-a*(zO+zalpha)))
limits <- quantile(th, adj.alpha, type=6)
return(list("est"=th0, "BCa"=limits))
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Example 8.14 (BCa bootstrap confidence interval). Compute a BCa confi-
dence interval for the bioequivalence ratio statistic of Example 8.9 using the
function boot.BCa provided in Example 8.13.

data(patch, package = "bootstrap")

n <- nrow(patch)
B <- 2000

y <- patch$y

z <- patch$z

x <- cbind(y, z)

theta.b <- numeric(B)
theta.hat <- mean(y) / mean(z)

#bootstrap
for (b in 1:B) {
i <- sample(l:n, size = n, replace = TRUE)
y <- patch$y[i]
z <- patch$z[i]
theta.b[b] <- mean(y) / mean(z)
¥
#compute the BCa interval
stat <- function(dat, index) {
mean(dat[index, 1]) / mean(dat[index, 2]) 1}

boot.BCa(x, thO = theta.hat, th = theta.b, stat = stat)

In the result shown below, notice that the probabilities a/2 = 0.025 and
1 —a/2 =0.975 have been adjusted to 0.0339, and 0.9824.

$est
[1] -0.0713061

$BCa
3.391094%, 98.24405Y%
-0.2252715 0.1916788

Thus bioequivalence (|| < 0.20) is not supported by the BCa confidence
interval estimate of 6. ©

R Note 8.4 Empirical influence values

By default, the type="bca" option of the boot.ci function computes
empirical influence values by a regression method. The method in ex-
ample 8.13 corresponds to the “usual jackknife” method of computing
empirical jackknife values. See [68, Chapter 5] and the code for empinf,
usual. jack.
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Example 8.15 (BCa bootstrap confidence interval using boot.ci). Compute
a BCa confidence interval for the bioequivalence ratio statistic of Examples
8.5 and 8.9, using the function boot.ci provided in the boot package [36].

boot.obj <- boot(x, statistic = stat, R=2000)
boot.ci(boot.obj, type=c("perc", "bca"))

The percentile confidence interval is also given for comparison.

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : boot.ci(boot.out = boot.obj, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% (-0.2368, 0.1824 ) (-0.2221, 0.2175 )
Calculations and Intervals on Original Scale

8.5 Application: Cross Validation

Cross validation is a data partitioning method that can be used to assess
the stability of parameter estimates, the accuracy of a classification algorithm,
the adequacy of a fitted model, and in many other applications. The jackknife
could be considered a special case of cross validation, because it is primarily
used to estimate bias and standard error of an estimator.

In building a classifier, a researcher can partition the data into training
and test sets. The model is estimated using the data in the training set only,
and the misclassification rate is estimated by running the classifier on the test
set. Similarly, the fit of any model can be assessed by holding back a test set
from the model estimation, and then using the test set to see how well the
model fits the new test data.

Another version of cross validation is the “n-fold” cross validation, which
partitions the data into n test sets (now test points). This “leave-one-out”
procedure is like the jackknife. The data could be divided into any number K
partitions, so that there are K test sets. Then the model fitting leaves out one
test set in turn, so that the models are fitted K times.

Example 8.16 (Model selection). The ironslag (DAAG) data [190] has 53
measurements of iron content by two methods, chemical and magnetic (see
“iron.dat” in [134]). A scatterplot of the data in Figure 8.2 suggests that the



236 Statistical Computing with R

chemical and magnetic variables are positively correlated, but the relation
may not be linear. From the plot, it appears that a quadratic polynomial, or
possibly an exponential or logarithmic model, might fit the data better than
a line.

There are several steps to model selection, but we will focus on the predic-
tion error. The prediction error can be estimated by cross validation, without
making strong distributional assumptions about the error variable.

The proposed models for predicting magnetic measurement (Y) from chem-
ical measurement (X) are:

1. Linear: Y = Gy + 51 X + <.

2. Quadratic: Y = By + f1.X + 52 X? + e

3. Exponential: log(Y) = log(Bo) + f1.X + ¢.
4. Log-Log: log(Y) = 8o + f1 log(X) + €.

The code to estimate the parameters of the four models follows. Plots of the
predicted response with the data are also constructed for each model and
shown in Figure 8.2. To display four plots use par (mfrow=c(2,2)).

library(DAAG); attach(ironslag)
a <- seq(10, 40, .1) #sequence for plotting fits

L1 <- Im(magnetic ~ chemical)

plot(chemical, magnetic, main="Linear", pch=16)
yhatl <- Li$coef[1] + Li$coef[2] * a

lines(a, yhatl, lwd=2)

L2 <- lm(magnetic ~ chemical + I(chemical”2))
plot(chemical, magnetic, main="Quadratic", pch=16)
yhat2 <- L2$coef[1] + L2$coef[2] * a + L2$coef[3] * a~2
lines(a, yhat2, lwd=2)

L3 <- Im(log(magnetic) ~ chemical)

plot(chemical, magnetic, main="Exponential", pch=16)
logyhat3 <- L3$coef[1] + L3$coef[2] * a

yhat3 <- exp(logyhat3)

lines(a, yhat3, lwd=2)

L4 <- Im(log(magnetic) ~ log(chemical))
plot(log(chemical), log(magnetic), main="Log-Log", pch=16)
logyhat4 <- L4$coef[1] + L4$coef[2] * log(a)

lines(log(a), logyhat4, lwd=2)

&

Once the model is estimated, we want to assess the fit. Cross validation
can be used to estimate the prediction errors.
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FIGURE 8.2: Four proposed models for ironslag data in Example 8.16.

Procedure to estimate prediction error by n-fold (leave-one-out)
cross validation

1. For k = 1,...,n, let observation (xy,yx) be the test point and use the
remaining observations to fit the model.

(a) Fit the model(s) using only the n — 1 observations in the training
set, (Iia yZ)7 { 7é k.

(b) Compute the predicted response i = BO + lek for the test point.

(¢) Compute the prediction error e; = yx — G-

2. Estimate the mean of the squared prediction errors 62 = 1 377" | 2.
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Example 8.17 (Model Selection: Cross validation). Cross validation is ap-
plied to select a model in Example 8.16.

n <- length(magnetic)  #in DAAG ironslag
el <~ e2 <- e3 <- e4 <- numeric(n)

# for n-fold cross validation
# fit models on leave-one-out samples
for (k in 1:n) {

y <- magnetic[-k]

x <- chemical [-k]

J1 <= 1m(y ~ x)
yhatl <- Ji1$coef[1] + Ji$coef[2] * chemical [k]
el[k] <- magnetic[k] - yhatl

J2 <= 1m(y ~ x + I(x72))

yhat2 <- J2$coef[1] + J2$coef[2] * chemicallk] +
J2$coef [3] * chemicall[k]~2

e2[k] <- magnetic[k] - yhat2

J3 <- 1m(log(y) ~ x)

logyhat3 <- J3$coef[1] + J3$coef[2] * chemical[k]
yhat3 <- exp(logyhat3)

e3[k] <- magnetic[k] - yhat3

J4 <- 1Im(log(y) ~ log(x))
logyhat4 <- J4$coef[1] + J4$coef[2] * log(chemical[k])
yhat4 <- exp(logyhat4)
e4[k] <- magnetic[k] - yhat4
}

The following estimates for prediction error are obtained from the n-fold cross
validation.

> c(mean(el1”2), mean(e272), mean(e3"2), mean(ed”2))
[1] 19.55644 17.85248 18.44188 20.45424

According to the prediction error criterion, Model 2, the quadratic model,
would be the best fit for the data.

> L2

Call:

Im(formula = magnetic ~ chemical + I(chemical~2))

Coefficients:

(Intercept) chemical I(chemical~2)
24.49262 -1.39334 0.05452

The fitted regression equation for Model 2 is
Y = 24.49262 — 1.39334X + 0.05452X 2.
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The residual plots for Model 2 are shown in Figure 8.3. An easy way to
get several residual plots is by plot(L2). Alternately, similar plots can be

displayed as follows.

par(mfrow = c(2, 2))
plot (L2$fit, L2$res)
abline (0, 0)
qgnorm(L2$res)
qqline(L2%res)

par (mfrow = c(1, 1))

#layout for graphs

#iresiduals vs fitted values

#tireference line

#normal probability plot

#reference line
#restore display

Part of the summary for the fitted quadratic model is below.

Residuals:
Min

1Q Median 3Q

Max

-8.4335 -2.7006 -0.2754 2.5446 12.2665

Residual standard error: 4.098 on 50 degrees of freedom
Multiple R-Squared: 0.5931, Adjusted R-squared: 0.5768

In the quadratic model the predictors X and X? are highly correlated. See
poly for another approach with orthogonal polynomials.
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FIGURE 8.3: Residuals of the quadratic model for ironslag data, from

Example 8.16.

Exercises

8.1 Compute a jackknife estimate of the bias and the standard error of the
correlation statistic in Example 8.2.
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8.2

8.3

8.4

8.5

8.6

8.7

Statistical Computing with R

Refer to the law data (bootstrap). Use the jackknife-after-bootstrap
method to estimate the standard error of the bootstrap estimate of

se(R).

Obtain a bootstrap t confidence interval estimate for the correlation
statistic in Example 8.2 (1aw data in bootstrap).

Refer to the air-conditioning data set aircondit provided in the boot
package. The 12 observations are the times in hours between failures of
air-conditioning equipment [68, Example 1.1]:

3,5,7,18,43, 85,91, 98, 100, 130, 230, 487.

Assume that the times between failures follow an exponential model
Exp(A). Obtain the MLE of the hazard rate A and use bootstrap to
estimate the bias and standard error of the estimate.

Refer to Exercise 8.4. Compute 95% bootstrap confidence intervals for
the mean time between failures 1/\ by the standard normal, basic,
percentile, and BCa methods. Compare the intervals and explain why
they may differ.

Efron and Tibshirani discuss the scor (bootstrap) test score data
on 88 students who took examinations in five subjects [91, Table 7.1],
[194, Table 1.2.1]. The first two tests (mechanics, vectors) were closed
book and the last three tests (algebra, analysis, statistics) were open
book. Each row of the data frame is a set of scores (x;1,...,x;5) for
the i*" student. Use a panel display to display the scatter plots for
each pair of test scores. Compare the plot with the sample correlation
matrix. Obtain bootstrap estimates of the standard errors for each of the
following estimates: p12 = p(mec, vec), psq = p(alg, ana), pss = p(alg,
sta), ps5 = p(ana, sta).

Refer to Exercise 8.6. Efron and Tibshirani discuss the following ex-
ample [91, Chapter 7]. The five-dimensional scores data have a 5 x 5
covariance matrix X, with positive eigenvalues Ay > --- > A5. In prin-
cipal components analysis,

A1
5
Z j=1 Aj
measures the proportion of variance explained by the first principal

component. Let Ay > -+ > A5 be the eigenvalues of X, where ¥ is the
MLE of ¥. Compute the sample estimate

0:

X A
=1

5
Zj:l >‘j

of 8. Use bootstrap to estimate the bias and standard error of 0.
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8.9

8.10

8.11
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Refer to Exercise 8.7. Obtain the jackknife estimates of bias and stan-
dard error of 6.

Refer to Exercise 8.7. Compute 95% percentile and BCa confidence
intervals for 6.

In Example 8.17, leave-one-out (n-fold) cross validation was used to
select the best fitting model. Repeat the analysis replacing the Log-
Log model with a cubic polynomial model. Which of the four models
is selected by the cross validation procedure? Which model is selected
according to maximum adjusted R2??

In Example 8.17, leave-one-out (n-fold) cross validation was used to
select the best fitting model. Use leave-two-out cross validation to com-
pare the models.

Projects

8.A

8.B

Conduct a Monte Carlo study to estimate the coverage probabilities of
the standard normal bootstrap confidence interval, the basic bootstrap
confidence interval, and the percentile confidence interval. Sample from
a normal population and check the empirical coverage rates for the
sample mean. Find the proportion of times that the confidence intervals
miss on the left, and the porportion of times that the confidence intervals
miss on the right.

Repeat Project A for the sample skewness statistic. Compare the cov-
erage rates for normal populations (skewness 0) and x2(5) distributions
(positive skewness).
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Chapter 9

Resampling Applications

Resampling and simulation methods for regression models may apply various
methods covered in previous chapters. In Chapter 8 we have seen an appli-
cation of the leave-one-out jackknife for model selection in regression. This
illustration of cross-validation is a simple example of a popular and powerful
method that is widely applied in statistical learning. Linear models are funda-
mental in statistics, so this chapter discusses some examples of simulation for
regression models. Jackknife-after-bootstrap is another useful technique that
we have already implicitly applied in Chapter 8 by the underlying compu-
tational methods for the BCa bootstrap confidence intervals. In this chapter
some details and applications of jackknife-after-bootstrap such as empirical
influence values are discussed. Many references are available on these topics.
For resampling and linear models, Faraway [94, 95], Fox [100], and Davison
and Hinkley [68] are good resources that feature implementation in R. Also
see Chapter 3 in James et al. [157] and Chapter 6 in Venables and Ripley
[293]. Other textbooks on applied regression analysis include Fox [100], Kut-
ner et al. [173], Mendenhall and Sincich [202], Montgomery et al. [211], and
Weisberg [310]. See James et al. [157] for an accessible introduction to variable
selection, validation, cross-validation, and applications in the general subject
of data mining.

9.1 Jackknife-after-Bootstrap

In Chapter 8, bootstrap estimates of standard error and bias were in-
troduced. These estimates are random variables. If we are interested in the
variance of these estimates, one idea is to try the jackknife.

Recall that S’E(é) is the sample standard deviation of B bootstrap replicates
of 6. Now, if we leave out the i*" observation, the algorithm for estimation
of standard error is to resample B replicates from the n — 1 remaining obser-
vations — for each 7. In other words, we would replicate the bootstrap itself.
Fortunately, there is a way to avoid replicating the bootstrap.

The jackknife-after-bootstrap computes an estimate for each “leave-one-
out” sample. Let J(i) denote the indices of bootstrap samples that do not

243
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contain z;, and let B(i) denote the number of bootstrap samples that do
not contain z;. Then we can compute the jackknife replication leaving out
the B — B(i) samples that contain x; [91, p. 277]. The jackknife estimate of
standard error is computed by formula (8.4). Compute

§e(0) = §¢jack (5651, - - -, 5en(n));
where
~ 1 A 12
Ses) =\ B > {9<j>—9<J<i>>}» (9.1)
JEJ(i)
and

~

- 1 .
by =5 2 )
B(i) ~—
JEJ(3)
is the sample mean of the estimates from the leave-z;-out jackknife samples.
For jackknife-after-bootstrap it is convenient to use the boot function for
the bootstrap, because the boot.array function can then be used to retrieve
an array that records the indices or the frequencies of observations in each
bootstrap sample.

Example 9.1 (Jackknife-after-bootstrap). Use the jackknife-after-bootstrap

A

procedure to estimate the standard error of se(#) for the patch data in Ex-
ample 8.7.

library(boot)
library(bootstrap)
set.seed(1111)

theta.boot <- function(patch, i) {
# function to compute the patch ratio statistic
y <- patch[i, "y"]
z <- patch[i, "z"]
mean(y) / mean(z)

}

boot.out <- boot(bootstrap::patch,
statistic = theta.boot, R=2000)

By default, the boot.array function returns the sample frequencies. The
first few rows of the array are shown below.

> A <- boot.array(boot.out)
> head(A, 3)

[,11 (,21 [,31 [,4] [,5] [,61 [,7]1 [,8]
[1,] 0 1 2 1 2 1 1 0
[2,] 0 1 0 1 2 2 2 0
[3,] 0 1 1 0 0 3 1 2
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Above we can see that observation (1) is omitted from the first three
samples, observation (8) is omitted from the first two samples, etc. For large
n, the probability that observation (1) is omitted from a bootstrap sample is
approximately e~ = 0.3678794. In this example, the proportion of samples
that omit (1) is close to e~ 1:

> mean(A[, 1] == 0)
[1] 0.328

The leave-one-out samples J(¢) that omit the i-th observation are the boot-
strap samples such that (A[ ,i] == 0) is true.

Jackknife-after-bootstrap can use these leave-one-out samples to estimate
bias and standard errors saving the need for a nested bootstrap. The bootstrap
replicates of 6®) are pre-computed, so in applying a jackknife-after-bootstrap
we only need to “look up” the corresponding replicates 6@,

# jackknife-after-bootstrap to est. se(se)

A <- boot.array(boot.out)

theta.b <- boot.out$t

n <- NROW(patch)

jack.se <- numeric(n)

for (i in 1:n) {
#in i-th replicate omit all samples with x[i]
keep <- which(A[, i] == 0)
jack.se[i] <- sd(theta.blkeep])

}

print(boot.obj) #for se_boot

se.bar <- mean(jack.se)

se.se <- sqrt((n-1) * mean((jack.se - se.bar)”2))

print (paste("Jackknife-after-bootstrap est. se(se)=", se.se))

The bootstrap estimate of standard error is 0.10305 and jackknife-after-
bootstrap estimate of its standard error is 0.030857. o

Example 9.2 (Jackknife-after-bootstrap). The bootstrap estimate of se is
itself a random variable. What is the standard error of Sep,.:? Instead of
running a nested bootstrap-within-bootstrap, we can apply jackknife-after-
bootstrap to estimate se(Seépoor). In this example we estimate the standard
error of §epe0: for the patch data.

# initialize

data(patch, package = "bootstrap")
y <- patch$y

z <- patch$z

dat <- cbind(y, z)

n <- NROW(dat)

B <- 2000
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# jackknife-after-bootstrap step 1: run the bootstrap
theta_boot <- function(dat, ind) {

# function to compute the statistic

y <- dat[ind, 1]

z <- dat[ind, 2]

mean(y) / mean(z)

}

boot.obj <- boot(dat, statistic = theta_boot, R=2000)
theta.hat <- boot.obj$t0

theta.b <- boot.obj$t

se.boot <- sd(theta.b)

#jackknife-after-bootstrap to est. se(se)
sample.freq <- boot.array(boot.obj)
se.se.reps <- numeric(n)

N <- 1:n

for (i in N) {
# jackknife-after-bootstrap
# omit all bootstrap samples that contain obs i
keep <- which(sample.freq[, i] == 0)
se.se.reps[i] <- sd(theta.bl[keepl)

}

print (boot.obj)

se.bar <- mean(se.se.reps)

se.se <- sqrt((n-1) * mean((se.se.reps - se.bar)”2))
se.se

The printed value of the bootstrap object includes the estimate 0.1004 for
standard error, and the jackknife-after-bootstrap estimate of se(se) is 0.0291.
For later reference, here are the jackknife replicates for the se(se):

> round(se.se.reps, 5)
[1] 0.10969 0.07371 0.10344 0.09041 0.10005 0.10113 0.10241 0.10905

9.2 Resampling for Regression Models

For a simple linear regression model with response Y and a single predictor
X, the assumed model can be written

}/j:ﬁo+61xj+5j, jzla"'ana (92)
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where ¢’s are uncorrelated, with zero mean, and equal variances 2. In addi-
tion, it is often assumed that the errors are normally distributed for inference
about parameter estimates and predictions. For multiple regression with re-
sponse Y and p predictors Xi,..., X, the model is usually written in matrix
form as

Y =XB+e, (9.3)

where Y is an n x 1 vector of the observed response, X is an n x (p+1) design
matrix, S is a (p+1) x 1 parameter vector, and errors € are uncorrelated with
zero mean and equal variances.

When the specified regression model is assumed to be correct, the con-
ditional expected response E[Y|X] is assumed to be linear. If this linearity
assumption is correct, the resampling errors approach may be applicable.

In certain situations, such as modeling data that should follow a known
law of physics, or other scientific model, one may have a strong belief that the
specified model is correct. In many other problems, this is not the case, so in
those cases the more appropriate method may be to apply cases resampling.

Simple Linear Regression Examples

To begin, we introduce two data sets “ironslag” and “mammals” as first
examples for simple linear regression.

In Examples 8.16 and 8.17 four different regression models were fit to the
DAAG: :ironslag data. The jackknife cross-validation indicated that the best
model among the four, based on smallest MSE, was the quadratic model. In
this section, we revisit the simple linear regression (Model 1).

Example 9.3 (ironslag linear model). The DAAG: : ironslag data [190] has 53
observations of paired measurements of iron content obtained by two methods,
chemical and magnetic. (See “iron.dat” in [134]). The plot in Figure 8.2
suggests that the variables are positively correlated. As a first step, we fit a
simple linear regression model (9.2) to the data. The ggplot version of the
fitted line plot shown in Figure 9.1 displays confidence bands for the fitted
values by shading.

library(ggplot2)

library (DAAG)

L1 <- Im(magnetic ~ chemical, data=ironslag)

cf3 <- round(Li1$coeff, 3)

cap <- paste("Fit: magnetic =", cf3[1], "+", cf3[2], "chemical")

ggplot (data=ironslag, aes(chemical, magnetic)) +
geom_point () + geom_smooth(method="1m") +

ggtitle(cap)

plot(L1l, which=1:2) #residual plots
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Fit: magnetic = 1.403 + 0.916 chemical

40-

magnetic

10 15 20 25 30
chemical

FIGURE 9.1: Fitted line plot for the ironslag data in Example 9.3.

Residual plots (not shown) suggest that the error variance is non-constant
and identify three points with unusually large residuals. Based on this prelim-
inary analysis, we will apply cases resampling to obtain bootstrap estimates
of the model parameters. o

Example 9.4 (mammals data). The mammals data is in the MASS package,
and the example is discussed in [68, 293]. Here we want to model the depen-
dence between brain size and body size. The logarithms of brain and body
sizes are strongly skewed with some extremely large observations, as seen in
the summary below. However, correlation and a log-log plot (see Figure 9.2)
reveal a fairly strong linear association between the logarithms of the vari-
ables, so we fit a simple linear regression model to predict log(brainsize) given
log(bodysize):

log(brainsize) = By + 1 X log(bodysize) + €. (9.4)

library (MASS)

cor(log(mammals$body), log(mammals$brain))

> cor(log(mammals$body), log(mammals$brain))
[1] 0.9595748

summary (mammals)

body brain
Min. : 0.005 Min. : 0.14
1st Qu.: 0.600 1st Qu.: 4.25

Median : 3.342 Median : 17.25
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Mean : 198.790 Mean : 283.13
3rd Qu.: 48.203 3rd Qu.: 166.00
Max. :6654.000 Max. :5712.00

The simple linear regression model is (9.4). We fit the model by ordinary
least squares using the 1m function:

y <- log(mammals$brain)
x <- log(mammals$body)
L <- Im(y ~ %)

and obtain the fit

> L

Coefficients:

(Intercept) X
2.1348 0.7517

The estimated coefficients are (5o, 51) in the log-log model (9.4). In terms of
the original measurements, the predicted values are

brain — eﬁo(body)ﬁl = 8455 . (body)o‘752.

We use ggplot to display a fitted line plot:

cap <- paste("Fit: log(brain) =", round(L$coeff[1],3),
"+", round(L$coeff[2],3), "log(body)")
ggplot (data=mammals, aes(x, y)) +
geom_point () + geom_smooth(method="1m") +
labs(x = "log(body)", y = "log(brain)", title = cap)

The fitted line in Figure 9.2 appears to fit the data well, and the diagnostic
residual plots displayed by plot (L) (not shown) are consistent with the model
assumption of constant error variance.

The fitted model has a high coefficient of determination R2:

> summary (L) $r.squared
[1] 0.9207837

indicating that 92% of the total variation of Y about its mean is explained by
the model. There are three unusual observations (32, 34, 35) identified on the
first residual plot (not shown).

Here the preliminary analysis does not suggest that the model is misspec-
ified or that there are departures from the model assumptions, so we will use
this example to illustrate model-based resampling in a later section. o
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Fit: leg(brain) = 2.135 + 0.752 log(body)

y: log(brain)

X log(body)

FIGURE 9.2: Fitted line plot for the mammals data in Example 9.4.

9.2.1 Resampling Cases

Resampling cases is a suitable approach when we do not have a strong belief
that model is correctly specified, which is perhaps the most typical situation
in modeling. In this approach, one is not assuming linearity of E[Y|X = z] or

that errors have constant variance. Resampling cases requires that the errors
are independent.

Resampling cases: algorithm

In this algorithm, pairs (z;,y;), ¢ = 1,...,n are the observed sample data.
For r =1 to R:
1. Randomly draw n integers {i}, ..., } from {1,...n} with replacement.

2. Set 7 = Tix and y; :yi;,jzl,...,n.

3. Fit an ordinary least squares (OLS) regression model to the pairs
(x7,y7), j = 1,...,n to get estimates BA(()T)* and BAY)* and the residual
standard error s* for the 7" sample.

The above algorithm can be generalized to resampling cases for multiple

regression models replacing x; with the feature vector x; and (5o, 51) with the
parameter vector (3.

Example 9.5 (ironslag data, resampling cases). To illustrate the cases re-
sampling method, we apply cases resampling to the simple linear regression
model (Model 1) discussed in Examples 8.16 and 9.3.
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x <- ironslag$chemical

y <- ironslag$magnetic

m <- 2000

n <- NROW(x)

L1 <- 1Im(y ~ x) #estimate the model
b0 <- Li$coeff[1]; bl <- Li$coeff[2]

## run bootstrap of cases
out <- replicate(m, expr={
i <- sample(l:n, replace=TRUE, size=n)
xstar <- x[il]
ystar <- yl[il
Lb <- lm(ystar ~ xstar)
s <- summary(Lb)$sigma
c(Lb$coeff[1], slope=Lb$coeff[2], s=s)
B

The replicate loop returns a vector of three statistics on each of the m
iterations. The output will be a 3 x m matrix. The rows are the bootstrapped
intercepts, slopes, and standard error estimates. We take the transpose of the
resulting matrix for easier analysis.

bootCases <- t(out)
meanCases <- colMeans(bootCases)
sdCases <- apply(bootCases, 2, "sd")

> meanCases

(Intercept) slope.xstar s
1.3879135  0.9153462  4.2283183

> sdCases

(Intercept) slope.xstar s
2.3744133 0.1229334  0.4737945

Estimates for the bias of BO and Bl are found by the usual method for
bootstrap.

biasInt <- mean(bootCases[,1] - b0) #bias for intercept
biasSlope <- mean(bootCases[,2] - bl) #bias for slope

Summarizing the model and bootstrap estimates:

> rbind(estimate=c (b0, bl), bias=c(biasInt, biasSlope),
+ se=sdCases[1:2], cv=c(biasInt, cv=biasSlope)/sdCases[1:2])

(Intercept) X
estimate 1.402597403 0.9157699443
bias -0.014683864 -0.0004237731
se 2.374413269 0.1229334214

cv -0.006184207 -0.0034471758
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The coefficient of variation (cv) is bias/se. This measures the bias in units of
se. According to the bootstrap, the parameter estimates are almost unbiased.
o

Example 9.6 (Resampling cases using the boot function). This example gives
an alternate solution using the boot: :boot function to implement resampling
cases in Example 9.5. Recall from Chapter 8 that the boot function requires
a statistic function argument.

library(boot)
m <- 2000
stats <- function(dat, i) {
x <- dat$chemicall[il
y <- dat$magnetic[i]
Lb <- 1m(y ~ x)
s <- summary(Lb)$sigma
c(Lb$coeff[1], slope=Lb$coeff[2], s=s)
}

boot.out <- boot(ironslag, statistic=stats, R=2000)

Because the statistic function returns a vector of three statistics, the
return value of boot has a table with three rows summarizing the three boot-
strapped statistics.

Bootstrap Statistics :

original bias std. error
tix 1.4025974 -2.210531e-02 2.342094
t2% 0.9157699 2.350153e-05 0.121051
t3* 4.3274616 -1.004868e-01 0.466549

The original estimates are in boot.out$t0 as usual:

> boot.out$t0
(Intercept) slope.x s
1.4025974 0.9157699  4.3274616
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R Note 9.1

The broom package [243] provides a method to convert the summary
table into a “tibble”, which is a type of trimmed down data frame.
The tibble format may be very useful any time we want to extract
components of objects for further analysis or plotting.

> broom: : tidy (boot.out)
# A tibble: 3 x 4

term statistic bias std.error
<chr> <dbl> <dbl> <dbl>
1 (Intercept) 1.40 -0.0221 2.34
2 slope.x 0.916 0.0000235 0.121
3 s 4.33 -0.100 0.467

The broom package includes tidy methods for many other methods in
R. See the package documentation and vignettes for details.

To access the bootstrapped slopes, corresponding to index 2 or t2*, extract
column 2 from the matrix of replicates t, which is a R x 3 matrix. For example,
the se(slope) estimate is

> sd(boot.out$t[,2])
[1] 0.121051

Alternately, using tidy makes it easier to access the table of estimates:

> boottbl <- broom::tidy(boot.out)
> boottbl$std.error[2]
[1] 0.121051

A histogram of the bootstrapped slopes is shown in Figure 9.3, with the
observed slope indicated by a vertical line.

MASS: :truehist (boot.out$t[ ,2], main="", xlab="slopes")
abline(v = boot.out$t0[2], lwd=2)

<

Bootstrappped parameter estimates can now be applied to obtain boot-
strap confidence intervals and hypothesis tests for the estimates B without
requiring the usual assumptions of the parametric ¢ test provided by the
summary.1lm method.

In this example, we have already noted that the error variance does not
appear to be constant, which is one of the conditions assumed for parametric
inference about the estimates based on the t distribution. It may be more
reliable to apply the bootstrap approach for inference in this case. To check
whether the regression is significant, for example, we construct a 95% confi-
dence interval for the slope. Recall that our point estimate is 61 =0.91577.
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FIGURE 9.3: Probability histogram of bootstrapped slopes in Example 9.6.

boot.ci(boot.out, index=2, type=c("norm","perc","basic","bca"))

The four bootstrap intervals below are in close agreement, and none of

them contain zero, so we can conclude at o = 0.05 that there is a significant
linear relation between the chemical and magnetic variables.

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.out, type = c("norm", "perc", "basic",
"bca"), index = 2)

Intervals :
Level Normal Basic
95% ( 0.6785, 1.1530 ) ( 0.6729, 1.1467 )

Level Percentile BCa
95% ( 0.6849, 1.1587 ) ( 0.6993, 1.1809 )
Calculations and Intervals on Original Scale

9.2.2 Resampling Errors (Model Based)

the

Model-based resampling is based on resampling the errors or residuals of
fitted regression model. There are several types of residuals. Residuals

used in this chapter are summarized in Table 9.1.

The raw residuals of a fitted simple linear regression model (9.2) are

e =Y — Ui, 1=1,...,n.
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The standard error of a residual depends on the leverage values h;, where
h; = h;; are the diagonal elements of

I N 7 1 € )
P = F S5,

The standard error of the i-th residual is se(e;) = v/ MSE(1 — h;). The stan-
dard errors of the residuals are not constant with respect to x. Because the
resampling errors method draws the residuals at random, the residuals should
be normalized to have common variance.

The standardized residuals are normalized to have variance 1 for each i
by dividing the raw residuals by s(e;) = \/MSE(1 — h;). Note that there
are two R functions that standardize residuals, rstandard and rstudent.
Both of these functions normalize the raw residuals to have variance 1, but by
different methods. The rstandard function uses MSE, the regression estimate
of the error variance, and rstudent uses a leave-one-out measure of the error
variance.

The hat values h; can be extracted from a fitted model object using the
hatvalues function. The root mean squared error or RMSE is the square root
of MSE, where, for a model with p predictors,

1 n
A2 2
MSE =6 = n—pzei
i=1

is the estimate of error variance.

However, in order to obtain the bootstrap estimates of standard error,
we do not want to transform residuals so that the variance is 1, but rather to
transform the residuals so that the variance is constant. The modified residuals
are normalized by the leverage values like the standardized residuals, but are
not divided by v MSE. That is, the modified residuals are

e
—_——, i=1,...,
The modified residuals are normalized to have constant variance, rather than

unit variance. The modified residuals could be computed by multiplying stu-
dentized residuals by RMSE =+ MSE.

Resampling errors: algorithm

This algorithm applies to the simple linear regression model (9.2) or the
multiple regression model (9.3) for predicting response variable Y from the p
predictors X1, ..., X,.

1. Fit the regression model by ordinary least squares (OLS) to the observed
data, obtaining parameter estimates 3 = (8o, 81, ..., 8p)7, 62 and fitted
values 41, .., Un-
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TABLE 9.1: Some Types of Residuals and How to Compute Them from a
Fitted 1m Object L

Name Definition R
Raw residuals € =Y — Ui L$resid

h; = hy; hatvalues(L)

6 =RMSE =+vVMSE summary(L)$sigma
Modified residuals \/1617}” rstandard(L, sd=1)
Standardized residuals %~ = —(—%—— rstandard (L)

s(ei) /MSE(1—h;)

2. Compute the raw residuals e; = y; — §; and the modified residuals e}, =

61'/\/1—]11'7 1= 1,...,’{7,.
3. Center the modified residuals: r; = e} — €.

4. Initialize R, the number of bootstrap replicates, and an R X (p + 2)
matrix B to store the bootstrap replicates.

5. For each bootstrap replicate k =1,..., R:
(a) For j =1 to n:
i. Set 2} = x;.

ii. Randomly sample (with replacement) s;(k) from {ry,...,r,}.

iii. Set i = o + Bzt + &5 = g; + ;™.

(b) Fit the OLS regression model to the n pairs {(z7}, y;(k))} obtaining
the k-th bootstrap estimates B(k) and the residual se s%) for the
k-th sample.

(c) Return the vector of parameter estimates (B(k), s()) for the k-th

bootstrap sample, storing the estimates in row k of the output
matrix B.

Example 9.7 (Resampling errors: mammals data). A simple method to com-
pute the modified residuals is to set sd=1 in rstandard. The modified resid-
uals should be centered by subtracting their average. The fitted model from
Example 9.4 is saved in object L.

m.resid <- rstandard(L, sd = 1)
r <- m.resid - mean(m.resid)

Then the bootstrap samples are drawn with replacement from the centered
modified residuals.

m <- 1000; n <- NROW(x)
estsErr <- replicate(m, expr={



estar <- sample(r, replace=TRUE, size=n)

Resampling Applications

ystar <- L$fitted.values + estar
Lb <- 1m(ystar ~ x)

s <- summary(Lb)$sigma
c(bO=Lb$coeff[1], bl=Lb$coeff[2], s=s)

b

ests <- t(estsErr)

Summary statistics for the bootstrapped estimates:

> summary(ests)
b0. (Intercept)
Min. :1.

1st Qu.:
Median :

3rd Qu.:
Max. :

2
2
Mean :2.
2
2

866

.074
.133

135

.198
447

bl.
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

O O O O O O ™

.6509
. 7346

7530

. 7534
L7729
.8538

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

O O O O O O

.4984
.6478
.6956
.6937
.7380
.9575
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From the summary table we can observe that the mean and median are
approximately equal for both coefficients, and that the quartiles are approx-
imately symmetric around the median for both. This is consistent with a
symmetric distribution of the replicates.

<

With the bootstrap replicates we can learn about the sampling distribution
of the parameter estimates, such as estimates of standard errors se(BAj) for each
B;, and certain measures of influence. If the model is correct, we should expect
that the usual least squares estimators of standard errors of BO and 31 are close
to the error estimates obtained by bootstrap.

Theoretically, if the simple linear regression model (9.2) is correct,

o2 1/2
SS, '

For the intercept,

se(fy) =

o(Bo) =0

A

1

—+

n

552

1/2
iR

Y (X —-X

Example 9.8 (Resampling errors, continued). For the log-log linear model
fit to the mammals data in Example 9.4, the model-based bootstrap replicates

of Example 9.7 produced the following estimate of se(ﬁl):

> sd(ests[,2])
[1] 0.02870934

The bootstrap estimate of se for the slope should be close to the least squares
estimate se(f), which can be computed by:
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s <- summary(L)$sigma
SSx <- (n - 1) * var(x)
se.betal <- sqrt(s~2 / SSx)

> se.betal
[1] 0.02846356

The two estimates are quite close: s?aboot(ﬁl) = 0.028709 and s”\emg(ﬁl) =
0.028464.

To compare the estimates for the intercept se(Bo), we compute the regres-
sion and bootstrap estimates:

> s * sqrt(1/n + mean(x)~2 / SSx)
[1] 0.09604339
> sd(ests[,1])
[1] 0.09603022

which are also in close agreement.

A more convenient way to obtain the regression estimates of the standard
errors of Bj is through the summary.lm method. The predictor table is in
component $coefficients of the returned summary value.

betas <- summary(L)$coeff

> betas

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.1347887 0.09604339 22.22734 1.183207e-30
b4 0.7516859 0.02846356 26.40871 9.835792e-35

To extract just the standard errors, for example:

> betas[, "Std. Error"]
(Intercept) X
0.09604339 0.02846356

Here again it is very convenient to use tidy to convert this table into a
tibble

> broom: :tidy (summary (L))
# A tibble: 2 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 2.13 0.0960 22.2 1.18e-30
2 x 0.752 0.0285 26.4 9.84e-35

so that the standard errors are simply:

> broom: : tidy (summary(L))$std.error
[1] 0.09604339 0.02846356
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Example 9.9 (Model-based resampling with the boot function). The model-
based resampling errors method can be implemented using the boot function,
but the original model estimate and all of the computations on the residuals
must be pre-computed, because the data to be sampled in this approach are
the modified residuals.

Refer to the model fit for the mammals data in Examples 9.4 and 9.7. The
boot function supplies the data frame that is to be sampled (the modified
residuals) and the index vector for each sample. The boot function must also
pass the z (predictor) values and § fitted values. One way to do this is to
construct a data frame with all of the required values. In the following statistic
function, we will expect a data frame dat that contains these three variables.
Another option is to set x=TRUE, in 1m and pass the returned 1m object as an
additional argument.

regstats <- function(dat, i) {
#dat is a data frame (r, x, yhat)
#r are the modified centered residuals, yhat are the fits
ystar <- dat$yhat[i] + dat$r[i]
xstar <- dat$x[i]
Lnew <- lm(ystar ~ xstar)
Lnew$coefficients

}

Now, create the data frame with the required values for our bootstrap
sampling function regstats.

<- log(mammals$brain)

<- log(mammals$body)

<= Im(y ~ x)

<- rstandard(L, sd=1)

<- r - mean(r)

df <- data.frame(r=r, x=x, yhat=L$fitted)

H R P X<

Here are the first few rows of our data frame:

> head(df)

r X yhat
1 0.75110866 1.2193539 3.051360
2 1.17241445 -0.7339692 1.583074
3 -0.27005440 0.3001046 2.360373
4 -0.72358079 6.1420374 6.751672
5 -0.05177026 3.5926438 4.835329
6 0.11677623 3.3199873 4.630376

Finally we run the bootstrap with R=2000, which is large enough to esti-
mate bias.

boot.obj <- boot(data=df, statistic=regstats, R=2000)
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The return value of the bootstrap object will contain the original estimates
in boot.obj$t0 and the bootstrapped intercepts and slopes in the matrix
boot.obj$t. See Example 9.6 for more details about how boot returns the
array of estimates. For any further analysis, tidy is recommended.

> broom: :tidy(boot.obj)
# A tibble: 2 x 4

term statistic bias std.error
<chr> <dbl> <dbl> <dbl>
1 (Intercept) 2.13  0.00231 0.0926
2 xstar 0.752 -0.000484 0.0238

Analysis of the bootstrap output would be similar to Examples 9.7 and 9.8
once the replicates are extracted from boot.obj$t or the result of tidy. o

9.3 Influence

The empirical influence values in jackknife-after-bootstrap are empirical
quantities that measure the difference between each jackknife replicate and
the observed statistic. There are several methods for estimating the influence
values. One approach uses the usual jackknife differences é(i) —0,i= 1,...,n.
The empinf function in the boot package computes empirical influence values
by four methods. The jack.after.boot function in the boot package [36]
produces a plot of empirical influence values. The plots can be used as a
diagnostic tool to see the effect or influence of individual observations. See
[68, Ch. 3] for examples and a discussion of how to interpret the plots.

9.3.1 Empirical Influence Values for a Statistic

The boot package provides a function empinf that computes empirical
influence values for a statistic by a choice of four methods. The method “usual
jackknife” (type = "jack") corresponds to the jackknife.

Let boot.out be the return value from an ordinary bootstrap using
boot with default arguments. When empinf computes influence values with
boot.out as its first argument, and with type = "jack", the “usual jack-
knife” values are computed by the following formula:

(n—1)0—04), i=1,...,n (9.5)

Thus, —biasjqcr is the mean of the vector in 9.5. The leave-one-out jackknife
replicates are therefore

é(i) _ é _ infljack [’L] )
n—1
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Example 9.10 (Empirical influence values for the patch ratio statistic).
To obtain empirical influence values for the patch ratio statistic using
boot: :empinf we first run the bootstrap, then use empinf on the result with
type = "jack".

library(boot)

theta_boot <- function(dat, ind) {
# function to compute the patch ratio statistic
mean(dat [ind, ]$y) / mean(dat[ind, 1$z)

}

boot.out <- boot(patch, theta_boot, R = 2000)

infl <- empinf(boot.out, type = "jack")

jack <- theta.hat - infl / (arow(patch) - 1)

The influence values and the corresponding jackknife replicates are:

> rbind(infl, jack)
[,1] [,2] [,3] [,4]
infl -0.09931275 0.4003552 -0.3489500 0.4280096
jack -0.05711856 -0.1284997 -0.0214561 -0.1324503
[,5] [,6] [,7] [,8]
infl -0.14445000 0.08919352 -0.04510179 -0.34376379
jack -0.05067038 -0.08404803 -0.06486298 -0.02219698

The influence values are a linear function of the jackknife replicates, so either
of them can be used to measure influence. o

9.3.2 Jackknife-after-Bootstrap Plots

The jack.after.boot(boot) function computes the jackknife influence
values from a bootstrap output object using the empinf function and displays
a jackknife-after-bootstrap plot.

Example 9.11 (Jackknife-after-bootstrap plot). Use the boot function to
bootstrap the patch ratio statistic (see Example 9.10), then display the
jackknife-after-bootstrap plot of influence values.

In jack.after.boot below, the argument useJ=TRUE indicates that jack-
knife influence values calculated from the bootstrap replicates will be used
(default is FALSE). Otherwise, empirical influence values will be used. The
argument stinf indicates whether or not to standardize the jackknife values
before plotting (default is TRUE).

jack.after.boot(boot.out, useJ=TRUE, stinf=FALSE)
See Figure 9.4.

Interpreting the plot

On the vertical axis are the percentiles of the replicates T* — ¢t. On the
horizontal axis are the jackknife influence values. The observation numbers
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are shown below the points. The plotted jackknife values above are (n - 1)
* (mean(J) - J) where J is the vector of jackknife-after-bootstrap estimates.
For comparison, we can compute:

n <- NROW(dat)

J <- numeric(n)

b.freq <- boot.array(boot.obj)
theta.b <- boot.obj$t

for (i in 1:n) {
keep <- which(b.freq[ ,i] == 0)
J[i] <- mean(theta.blkeepl)

}

# the jackknife influence values
J
rbind((1:n), (n - 1) * (mean(J) - J))

This plot is easier to interpret if the standardized values are plotted, as
shown in Figure 9.5, which is the default for jack.after.boot.

jack.after.boot (boot.out, useJ=TRUE, stinf=TRUE)

In Figure 9.5, none of these observations appear to have extreme standard-
ized jackknife values. o

0.2

0.1

0.0
1

5,10, 16, 50, 84, 90, 95 %-~iles of (T*-t)

-03 -02 -0.1
1

-0.2 0.0 0.2 0.4

jackknife value

FIGURE 9.4: Jackknife-after-bootstrap plot in Example 9.11.
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0.2
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5,10, 16, 50, 84, 90, 95 %-iles of (T*~t)
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standardized jackknife value

FIGURE 9.5: Jackknife-after-bootstrap plot with standardized influence val-
ues in Example 9.11.

Exercises

9.1 In jackknife-after-bootstrap, show that the probability that a bootstrap
sample omits a given observation i is asymptotically equal to e ! (about
0.368). That is, show that for large n the proportion of bootstrap sam-

ples that omit observation i is approximately equal to e™t, i =1,...,n.
9.2 a. Fit the simple linear model to the DAAG: : ironslag data discussed
in Example 8.16.

b. Compute the modified residuals two ways and show that they are
equal. Hint: Try using the all.equal function to compare the re-
sults.

i. Method 1: Use the definition and the hatvalues function.
ii. Method 2: Use the rstandard function with sd = 1.
c. Compute the hat values directly from the formula for h;;. Check

that your vector h is identical to the hatvalues function result.

9.3 Refer to the catsM data in the boot package.

a.

Display a fitted line plot (use basic R graphics) for the simple linear
regression model predicting body weight (Bwt) from heart weight
(Hwt).

Display the fitted line plot using ggplot2.
Display a plot of residuals vs. fits.

Comment on the fit of this model. Are there any outliers? If so,
identify these points by observation number.
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9.4

9.5

9.6

9.7
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e. Based on your analysis above, to analyze the fit using bootstrap,
choose a resampling method and explain your reasoning.

f. Bootstrap the slopes of this model and obtain a bootstrap estimate
the standard error of ;.

g. Use jackknife-after-bootstrap to identify influential observations.

Implement the resampling cases method on the MASS: :mammals data
using the boot function. Compare your results for the bias and se.

To investigate the error distribution and influence, we would like to
have bootstrapped estimates of the squared error. Suppose that a data
set contains the response y and predictor x. Write a statistic function
for use with the boot function that will return the MSE for the fitted
simple linear regression model y = By + S + €. Test this function
by generating random bivariate normal data and running an ordinary
bootstrap of the MSE for the regression model.

Refer to the mammals data in the MASS package, discussed in this
chapter. Use your solution to the previous problem to bootstrap the
MSE of the model (9.4). Using the jackknife-after-bootstrap, identify
which points are influential. Compare this with the influential points
identified from the bootstrapped slopes.

Plot the bootstrapped intercepts from Example 9.9 using the plot
method for boot with jack=TRUE. This displays a histogram of empirical
influence values with a Q-Q plot, and a plot similar to jack.after.boot
below. Identify influential observations from the plot. Are there points
with standardized influence values larger than 2 in absolute value? Re-
peat this for the slopes by setting index = 2. Do you find the same
points influential in both plots?



Chapter 10

Permutation Tests

10.1 Introduction

Permutation tests are based on resampling, but unlike the ordinary boot-
strap, the samples are drawn without replacement. Permutation tests are often
applied as a nonparametric test of the general hypothesis

Hy:F=@G VS H, :F+#G, (10.1)

where F' and G are two unspecified distributions. Under the null hypothesis,
two samples from F' and G, and the pooled sample, are all random samples
from the same distribution F'. Replicates of a two-sample test statistic that
compares the distributions are generated by resampling without replacement
from the pooled sample. Nonparametric tests of independence, association,
location, common scale, etc. can also be implemented as permutation tests.
For example, in a test of multivariate independence

Hy:Fy,=F,F, vs H:F,, #F.F, (10.2)

under the null hypothesis, the data in a sample need not be matched, and all
pairs of samples obtained by permutations of the row labels (observations) of
either sample are equally likely. Any statistic that measures dependence can
be applied in a permutation test.

Permutation tests also can be applied to multi-sample problems, with sim-
ilar methodology. For example, to test

Hy:Fy=---=F, vs H:F,#F,forsometi,j (10.3)

the samples are drawn without replacement from the & pooled samples. Any
test statistic for the multisample problem can then be applied in a permutation
test.

This chapter covers several applications of permutation tests for the gen-
eral hypotheses (10.1) and (10.2). See the books by Efron and Tibshirani [91,
Ch. 15], Davison and Hinkley [68], Good [130], and Manly [192] for back-
ground, examples, and further discussion of permutation tests. More complex
problems and theoretical considerations are covered in Chung and Romano
[53], Janssen and Pauls [158], Romano [245, 246, 247], and Welch [311]. On

265
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permutation and randomization tests for linear models see Anderson [10, 11],
Anderson and Ter Braak [9], Anderson and Robinson [12], Kennedy and Cade
[166], and Ter Braak [282]. The vegan package for R [219] implements permu-
tation tests for structured multisample, multivariate data, or ‘PERMANQOVA".

Permutation Distribution

Suppose that two independent random samples X1,..., X, and Y7,...,Y,,
are observed from the distributions Fx and Fy, respectively. Let Z be the
ordered set {X1,...,X,,Y1,..., Y, }, indexed by

v={1,...,n,n+1,....,.n+m}={1,...,N}.

Then Z; = X; 1 <i<nand Z; = Y,_,ifn+1<i<n+m. Let
Z* = (X*,Y™) represent a partition of the pooled sample Z = X UY, where
X* has n elements and Y* has N —n = m elements. Then Z* corresponds to
a permutation 7 of the integers v, where Z = Z ;). The number of possible
partitions is equal to the number (17\{ ) of different ways to select the first n
indices of m(v), hence there are (JT\L[ ) different ways to partition the pooled
sample Z into two subsets of size n and m.

The Permutation Lemma [91, p. 207] states that under Hy : F

= F
X
randomly selected Z* has probability

Y?a‘

1 nlm!

[

of equaling any of its possible values. That is, if ', = F|, then all permutations

are equally likely. .
If (X,Y) = 0(Z,v) is a statistic, then the permutation distribution of 9*

is the distribution of the replicates
. R , N
{67} = {G(Z, mi(v),ji=1,..., (n)}

= {89 | 7;(v) is a permutation of v}.

The cdf of 6* is given by
. N TN L
Fy-(t) = P(0* <t) = ( ) > I(09) <v). (10.4)

Thus, if 6 is applied to test a hypothesis and large values of 0 are significant,
then the permutation test rejects the null hypothesis when 6 is large relative
to the distribution of the permutation replicates. The achieved significance
level (ASL) of the observed statistic § is the probability

o NP .
P =0 = (V) o169 =)
j=1

n
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where 6 = é(Z ,v) is the statistic computed on the observed sample. The ASL
for a lower-tail or two-tail test based on 6 is computed in a similar way.

In practice, unless the sample size is very small, evaluating the test statistic
for all of the (]X ) permutations is computationally excessive. An approximate
permutation test is implemented by randomly drawing a large number of
samples without replacement.

Approximate permutation test procedure
1. Compute the observed test statistic §(X,Y) = 6(Z,v).
2. For each replicate, indexed b= 1, ..., B:

(a) Generate a random permutation 7, = 7(v).
(b) Compute the statistic §®) = 6*(Z, m).

3. If large values of 6 support the alternative, compute the ASL (the em-
pirical p-value) by

L0 >4y {1+ S 100 2 0))

pP= B+1 - B+1

For a lower-tail or two-tail test p is computed in a similar way.

4. Reject Hy at significance level a if p < a.

The formula for p is given by Davison and Hinkley [68, p. 159], who state that
“at least 99 and at most 999 random permutations should suffice.”

Methods for implementing an approximate permutation test are illustrated
in the examples that follow. Although the boot function [36] can be used to
generate the replicates, it is not necessary to use boot. For a multivariate
permutation test using boot see the examples in Section 10.3.

Example 10.1 (Permutation distribution of a statistic). The permuta-
tion distribution of a statistic is illustrated for a small sample, from the
chickwts data in R. Weights in grams are recorded, for six groups of
newly hatched chicks fed different supplements. There are six types of feed
supplements. A quick graphical summary of the data can be displayed by
boxplot (formula(chickwts)). The plot (not shown) suggests that soybean
and linseed groups may be similar. The distributions of weight for these two
groups are compared below.

attach(chickwts)
x <- sort(weight[feed == "soybean"])
y <- sort(weight[feed == "linseed"])
detach(chickwts)

The ordered chick weights for the two samples are
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X: 1568 171 193 199 230 243 248 248 250 267 271 316 327 329
Y: 141 148 169 181 203 213 229 244 257 260 271 309

The groups can be compared in several ways. For example, sample means,
sample medians, or other trimmed means can be compared. More generally,
one can ask whether the distributions of the two variables differ and compare
the groups by any statistic that measures a distance between two samples.

Consider the sample mean. If the two samples are drawn from normal
populations with equal variances, we can apply the two-sample t-test. The
sample means are X = 246.4286 and Y = 218.7500. The two sample ¢ statistic
is T'= 1.3246. In this problem, however, the distributions of the weights are
unknown. The achieved significance level of T can be computed from the
permutation distribution without requiring distributional assumptions.

The sample sizes are n = 14 and m = 12, so there are a total of

n+m 26 26!
( n ) B <14> = Tarig - 007700

different partitions of the pooled sample into two subsets of sizes 14 and 12.
Thus, even for small samples, enumerating all possible partitions of the pooled
sample is not practical. An alternate approach is to generate a large number of
the permutation samples, to obtain the approximate permutation distribution
of the replicates. Draw a random sample of n indices from 1:N without replace-
ment, which determines a randomly selected partition (X*,Y™*). In this way
we can generate a large number of the permutation samples. Then compare
the observed statistic T' to the replicates T™.

The approximate permutation test procedure is illustrated below with the
two-sample t statistic.

R <- 999 #number of replicates
z <= c(x, y) #pooled sample

K <- 1:26

reps <- numeric(R) #storage for replicates

t0 <- t.test(x, y)$statistic

for (i in 1:R) {
#generate indices k for the first sample
k <- sample(K, size = 14, replace = FALSE)

x1 <- z[k]

yl <- z[-k] #complement of x1
reps[i] <- t.test(xl, yl)$statistic
}

p <- mean(c(t0, reps) >= t0)

> P
[1] o.101
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The value of p is the proportion of replicates T that are at least as large as
the observed test statistic (an approximate p-value). For a two-tail test the
ASL is 2p if p < 0.5 (it is 2(1 — p) if p > 0.5). The ASL is 0.202 so the
null hypothesis is not rejected. For comparison, the two-sample t-test reports
p-value = 0.198. A histogram of the replicates of T' is displayed by

hist(reps, main = "", freq = FALSE, xlab = "T (p = 0.202)",
breaks = "scott")
points(t0, 0, cex = 1, pch = 16) #observed T
which is shown in Figure 10.1. o
< _ — 0 o |
o
o | ~
2 o 2 7
o} = o}
[=] o [
] N 41_17
o | o - »
S T T T ] — T 1T T T T 1
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T (p=0.202) D (p = 0.46)

FIGURE 10.1: Permutation distribution of replicates in Example 10.1 (left)
and Example 10.2 (right).

10.2 Tests for Equal Distributions

Suppose that X = (Xq,...,X,) and Y = (Y3,...,Y,,) are independent
random samples from distributions F and G, respectively, and we wish to
test the hypothesis Hy : F' = G vs. the alternative H; : F # G. Under
the null hypothesis, samples X, Y, and the pooled sample Z = X UY, are
all random samples from the same distribution F'. Moreover, under Hy, any
subset X* of size n from the pooled sample, and its complement Y*, also
represent independent random samples from F'.

Suppose that g is a two-sample statistic that measures the distance in
some sense between F' and G. Without loss of generality, we can suppose that
large values of 0 support the alternative F' # (G. By the permutation lemma,
under the null hypothesis all values of §* = é(X *,Y*) are equally likely. The

permutation distribution of 6* is given by (10.4), and an exact permutation
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test or the approximate permutation test procedure given in Section 10.1 can
be applied.

Two-sample tests for univariate data

To apply a permutation test of equal distributions, choose a test statistic
that measures the difference between two distributions. For example, the two-
sample Kolmogorov-Smirnov (K-S) statistic or the two-sample Cramér-von
Mises statistic can be applied in the univariate case. Many other statistics are
in the literature, although the K-S statistic is one of the most widely applied
for univariate distributions. It is applied in the following example.

Example 10.2 (Permutation distribution of the K-S statistic). In Example
10.1 the means of the soybean and linseed groups were compared. Suppose
now that we are interested in testing for any type of difference in the two
groups. The hypotheses of interest are Hy : F' = G vs Hy : F # G, where
F' is the distribution of weight of chicks fed soybean supplements and G is
the distribution of weight of chicks fed linseed supplements. The Kolmogorov-
Smirnov statistic D is the maximum absolute difference between the ecdf’s of
the two samples, defined by
D= sup |Fn(z)— Gm(z)],
1<i<N

where F;, is the ecdf of the first sample z1,...,z, and G,, is the ecdf of the
second sample y1, ..., Y. Note that 0 < D < 1 and large values of D support
the alternative F' # G. The observed value of D = D(X,Y) = 0.2976190
can be computed using ks.test. To determine whether this value of D is

strong evidence for the alternative, we compare D with the replicates D* =
D(X*,Y™).

R <- 999 #number of replicates
z <= c(x, y) #pooled sample

K <- 1:26

D <- numeric(R) #storage for replicates
options(warn = -1)

DO <- ks.test(x, y, exact = FALSE)$statistic
for (i in 1:R) {
#generate indices k for the first sample
k <- sample(K, size = 14, replace = FALSE)

x1 <- z[k]

y1l <- z[-K] #complement of x1

D[i] <- ks.test(xl, yl, exact = FALSE)$statistic
}

p <- mean(c(DO, D) >= DO)
options(warn = 0)

> p

[1] 0.46
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The approximate ASL 0.46 does not support the alternative hypothesis that

distributions differ. A histogram of the replicates of D is displayed by

hist(D, main

""", freq = FALSE, xlab = "D (p = 0.46)",

breaks = "scott")

points(DO, 0, cex = 1, pch = 16)

which is shown in Figure 10.1.

R Note 10.1

In Example 10.2 the Kolmogorov-Smirnov test ks.test generates a
warning each time it tries to compute a p-value, because there are
ties in the data. We are not using the p-value, so it is safe to ignore
these warnings. Display of warnings or messages at the console regard-
ing warnings can be suppressed by options(warn = -1). The default
0.

value is warn =

#observed D

Example 10.3 (Two-sample K-S test). Test whether the distributions of
chick weights for the sunflower and linseed groups differ. The K-S test can be
applied as in Example 10.2.

attach(chickwts)

x <- sort(weight[feed ==
y <- sort(weight[feed ==

detach(chickwts)

"sunflower"])
"linseed"])

The sample sizes are n = m = 12, and the observed K-S test statistic is
D = 0.8333. The summary statistics below suggest that the distributions of

weights for these two groups may differ.

> summary(cbind(x, y))

X
Min. 1226.
1st Qu.:312.
Median :328.
Mean :328.
3rd Qu.:340.
Max. 1423.

O N OO oo

y
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

:141.
178.
1221,
:218.
257.
:309.

O 00w O O O

Repeating the simulation in Example 10.2 with the sunflower sample replacing

the soybean sample produces the following result.

p <- mean(c(DO, D) >= DO)

>p
[1] 0.001
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Thus, none of the replicates are as large as the observed test statistic. Here
the sample evidence supports the alternative hypothesis that the distributions
differ. o

Another univariate test for the two-sample problem is the Cramér-von
Mises test [61, 296]. The Cramér-von Mises statistic, which estimates the
integrated squared distance between the distributions, is defined by

n m

P Y (Fulwi) = Go)? + 3 (Fulyy) — Gon))? |

W= Gt

i=1 j=1

where F,, is the ecdf of the sample x1,...,x, and G,, is the ecdf of the
sample y1, ..., Y. Large values of W5 are significant. The implementation of
the Cramér-von Mises test is left as an exercise.

The multivariate tests discussed in the next section can also be applied for
testing Hy : F' = G in the univariate case.

10.3 Multivariate Tests for Equal Distributions

Classical approaches to the two-sample problem in the univariate case
based on comparing empirical distribution functions, such as the Kolmogorov—
Smirnov and Cramér-von Mises tests, do not have a natural distribution-free
extension to the multivariate case. Multivariate tests based on maximum likeli-
hood depend on distributional assumptions about the underlying populations.
Hence although likelihood tests may apply in special cases, they do not apply
to the general two-sample or k-sample problem, and may not be robust to
departures from these assumptions.

Many of the procedures that are available for the multivariate two-sample
problem (10.1) require a computational approach for implementation. Bickel
[30] constructed a consistent distribution-free multivariate extension of the
univariate Smirnov test by conditioning on the pooled sample. Friedman
and Rafsky [104] proposed distribution-free multivariate generalizations of
the Wald-Wolfowitz runs test and Smirnov test for the two-sample problem,
based on the minimal spanning tree of the pooled sample. A class of con-
sistent, asymptotically distribution-free tests for the multivariate problem is
based on nearest neighbors [31, 146, 260]. The nearest neighbor tests apply
to testing the k-sample hypothesis when all distributions are continuous. A
multivariate nonparametric test for equal distributions was developed inde-
pendently by Baringhaus and Franz [24] and Székely and Rizzo [275, 276],
which is implemented as an approximate permutation test. We will discuss
the latter two, the nearest neighbor tests and the energy test [237, 275].
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In the following sections multivariate samples will be denoted by boldface
type. Suppose that

X={X,...,X,,}eRY Y={V,...,Y,,} € RY

are independent random samples, d > 1. The pooled data matrix is Z, an
n X d matrix with observations in rows:

T11 x1,2 e Z1,d
Z2,1 x2,2 e Z2.d
X 1 p,2 ... Tn,.d
Zpga= """ 7" [ I (10.5)
Y11 Y2 - Yid
Y21 Y22 - Y2.d
_y’ﬂg,l yn2,2 AR y’ﬂz,d_

where n = ny + ns.

10.3.1 Nearest Neighbor Tests

A multivariate test for equal distributions is based on nearest neighbors.
The nearest neighbor (NN) tests are a type of test based on ordered distances
between sample elements, which can be applied when the distributions are
continuous.

Usually the distance is the Euclidean norm ||z; — z;||. The NN tests are
based on the first through " nearest neighbor coincidences in the pooled sam-
ple. Consider the simplest case, r = 1. For example, if the observed samples
are the weights in Example 10.3

(,11 [,2]1 [,31 [,41 [,51 .61 [,71 [,81 [,91 [,101 [,11] [,12]
x 423 340 392 339 341 226 320 295 334 322 297 318
y 309 229 181 141 260 203 148 169 213 257 244 271

then the first nearest neighbor of ;1 = 423 is x3 = 392, which are in the same
sample. The first nearest neighbor of zg = 226 is yo = 229, in different samples.
In general, if the sampled distributions are equal, then the pooled sample
has on average less nearest neighbor coincidences than under the alternative
hypothesis. In this example, most of the nearest neighbors are found in the
same sample.

Let Z = {X1,...,Xn,, Y1,...,Yn,} as in (10.5). Denote the first near-
est neighbor of Z; by NN{(Z;). Count the number of first nearest neighbor
coincidences by the indicator function I;(1), which is defined by

I;(1) = 1if Z; and NN;(Z;) belong to the same sample;
I;(1) =0 if Z; and NN;(Z;) belong to different samples.
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The first nearest neighbor statistic is the proportion of first nearest neighbor
coincidences

17’L
T, =-S5 1),
1 n; (1)

where n = n; + no. Large values of T, 1 support the alternative hypothesis
that the distributions differ.

Similarly, denote the second nearest neighbor of a sample element Z; by
NNy(Z;) and define the indicator function I;(2), which is 1 if NNo(Z;) is in
the same sample as Z; and otherwise I;(2) = 0. The second nearest neighbor
statistic is based on the first and second nearest neighbor coincidences, defined
by

1 n
Toa= ;@(1) +1i(2)).

In general, the 7" nearest neighbor of Z; is defined to be the sample
element Z; satistying || Z;, — Z,|| < ||Z; — Z,|| for exactly r—1 indices 1 < ¢ < n,
¢ # i. Denote the r'* nearest neighbor of a sample element Z; by NN,.(Z;).
For i = 1,...,n the indicator function I;(r) is defined by I;(r) = 1 if Z;
and NN, (Z;) belong to the same sample, and otherwise I;(r) = 0. The J*
nearest neighbor statistic measures the proportion of first through J** nearest
neighbor coincidences:

n J
Toy = % P AGH (10.6)

i=1r=1

Under the hypothesis of equal distributions, the pooled sample has on aver-
age less nearest neighbor coincidences than under the alternative hypothesis,
so the test rejects the null hypothesis for large values of T, ;. Henze [146]
proved that the limiting distribution of a class of nearest neighbor statistics
is normal for any distance generated by a norm on R?. Schilling [260] derived
the mean and variance of the distribution of T,, o for selected values of ni/n
and d in the case of Euclidean norm. In general, the parameters of the nor-
mal distribution may be difficult to obtain analytically. If we condition on the
pooled sample to implement an exact permutation test, the procedure is dis-
tribution free. The test can be implemented as an approximate permutation
test, following the procedure outlined in Section 10.1.

Remark 10.1. Nearest neighbor statistics are functions of the ordered dis-
tances between sample elements. The sampled distributions are assumed to
be continuous, so there are no ties. Thus, resampling without replacement
is the correct resampling method, and the permutation test rather than the
ordinary bootstrap should be applied. In the ordinary bootstrap, many ties
would occur in the bootstrap samples.

Searching for nearest neighbors is not a trivial computational problem, but
fast algorithms have been developed [17, 18, 28]. A fast approximate nearest
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neighbor method ann is available in the yaImpute package [62]. The algorithms
in the library are based on kd-trees and box-decomposition trees. An ann can
also do an exact kd-tree search. Searching Bentley’s kd-tree should run in
O(nlogn) time, where n is the number of data points.

The yaImpute package performs nearest neighbor based imputation. The
yai function also finds nearest neighbors by a choice of several alternate meth-
ods, including the method provided in ann. See [62] for more details about
the package and examples. Here we discuss only the nearest neighbor search
function ann.

Tips for using the ann function in yaImpute

1. Arguments:

e ref is an n X d matrix containing the reference point set S. Each
row in ref corresponds to a point in d-dimensional space.

e target is an m x d matrix containing the points for which k nearest
neighbor reference points are sought.

e To obtain the first through 7" nearest neighbors, set argument
k=r+1.

e The default method is kd-tree search.

e For an exact kd-tree search in ann (with tree.type="kd") set ar-
gument eps=0. Set eps greater than 0 for an approximate search.

2. Return value of ann():

e knnIndexDist is an m x 2k matrix. Each row corresponds to a tar-
get point in target and columns 1:k hold the ref matrix row indices
of the nearest neighbors, such that column 1 index holds the ref
matrix row index for the first nearest neighbor and column k is the
k-th nearest neighbor index. Columns k+1:2k hold the Euclidean
distance from the target to each of the k nearest neighbors indexed
in columns 1:k.

e Rows of knnIndexDist correspond to points in the reference set
ref.

Columns 1:k of knnIndexDist give the NN indices.

Ignore knnIndexDist column 1.

Squared Euclidean distances are returned in columns starting k+1.
(The manual states that Euclidean distances are returned.)

Example 10.4 (Finding nearest neighbors). The following numerical example
illustrates the usage of the ann (yaImpute) [62] function as a method to find
the indices of the first through rt* nearest neighbors. The pooled data matrix
Z is assumed to be in the layout (10.5).
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library(yalmpute) #for ann function
set.seed(439)

#generate a small multivariate data set

x <- matrix(rnorm(12), 3, 4)

y <- matrix(rnorm(12), 3, 4)

z <- rbind(x, y)

k <- nrow(z) #number of nearest neighbors desired

## Do an exact kd-tree search
kd.exact <- ann(ref=z, target=z,

tree.type="kd", k=k, verbose=FALSE)
kd.exact$knnIndexDist[,1:k] #NN indices in col. 1:k

The indices of the nearest neighbors are

[,11 [,21 [,3] [,4]1 [,5] [,6]

[1,] 1 4 2 3 5 6
[2,] 2 1 5 3 4 6
[3,] 3 5 4 2 1 6
[4,] 4 1 3 5 2 6
[5,] 5 3 2 4 1 6
[6,] 6 5 3 4 2 1

The first nearest neighbor to point 1 is point 4 (in row 1, column 2). The first
three nearest neighbors to point 2 are points 1, 5, and 3 (in row 2, columns 2,
3, and 4).

The (squared) distances between the points are stored in the remaining
columns of the matrix.

#Euclidean distances

round(sqrt (kd.exact$knnIndexDist[,-(1:k)]),2)
[,11 [,2] [,3] [,4] [,5] [,6]

[1,] 0 1.88 2.29 2.69 2.87 3.94

[2,] 0 2.29 2.45 2.60 3.27 3.69
[3,] 0 0.43 2.14 2.60 2.69 3.52
[4,] 0 1.88 2.14 2.52 3.27 3.66
[5,] 0 0.43 2.45 2.52 2.87 3.48
[6,] 0 3.48 3.52 3.66 3.69 3.94

In this tiny data set, it is easy to verify these results by a quick check of the
distance matrix. In the first row below, sorting the distances in increasing order
shows that the first through fifth nearest neighbors of Z; are Zy, Zs, Z3, Zs, Zs.
This corresponds to indices 1, 4, 2, 3, 5, 6 in the first row of our result in
kd.exact$knnIndexDist.

> D <- dist(z)
> round(as.matrix(D), 2)

1 2 3 4 5 6
1 0.00 2.29 2.69 1.88 2.87 3.94
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2 2.29 0.00 2.60 3.27 2.45 3.69
3 2.69 2.60 0.00 2.14 0.43 3.52
4 1.88 3.27 2.14 0.00 2.52 3.66
5 2.87 2.45 0.43 2.52 0.00 3.48
6 3.94 3.69 3.52 3.66 3.48 0.00

To do an approximate kd-tree search, we choose a positive value for argu-
ment eps.

## Do an approximate kd-tree search

kd.approx <- ann(ref=z, target=z, tree.type="kd",
k=k, eps=100, verbose=FALSE)

kd.approx$knnIndexDist[,1:k] #NN indices

&

Example 10.5 (Nearest neighbor statistic). In this example a method of
computing nearest neighbor statistics from the result of ann (yaImpute) is
shown. Compute T}, 3 for the chickwts data from Example 10.3.

library(yaImpute)
attach(chickwts)

x <- weight[feed == "sunflower"]
y <- weight[feed == "linseed"]

z <- as.matrix(c(x, y))
detach(chickwts)

k <- 4 #want first 3 nearest neighbors

NN <- ann(ref=z, target=z, tree.type="kd", k=k, verbose=FALSE)
idx <- NN$knnIndexDist[,1:k]

nn.idx <- idx[,-1] #first NN is in column 2

The data and the index matrix NN$nn.idx are:

pooled sample $nn.idx
[,1] X1 X2 X3
[1,] 423 1 3 5 2
(2,1 340 2 4 5 9
[3,] 392 3 1 5 2
(4,1 339 4 2 5 9
[5,] 341 5 2 4 9
(6,1 226 6 14 21 23
(7,1 320 7 12 10 13
(8,1 295 8 11 13 12
[9,] 334 9 4 2 5
[10,]1 322 10 712 9
[11,]1 297 11 8 13 12

[12,] 318 12 7 10 13 I=1 if index <= 12
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[13,1 309 13 12 7 11 I=1 if index > 12
[14,]1 229 14 6 23 21
[15,] 181 15 20 18 21
[16,]1 141 16 19 20 15
[17,]1 260 17 22 24 23
[18,]1 203 18 21 15 6
[19,]1 148 19 16 20 15
[20,]1 169 20 15 19 16
[21,] 213 21 18 6 14
[22,]1 257 22 17 23 24
[23,] 244 23 22 14 17
[24,1 271 24 17 22 8

The first three nearest neighbors of each sample element Z; are in the i‘"
row. In the first block, count the number of entries that are between 1 and
n1 = 12. In the second block, count the number of entries that are between
ny+1=13 and n; + no = 24.

blockl <- nn.idx[1:12, ]
block2 <- nn.idx[13:24, ]
i1l <- sum(blockl < 12.5)
i2 <- sum(block2 > 12.5)

c(i1, i2)
[1] 29 29
Then
R 1 58
T,3=— I;(j) = ——(29 4 29) = — = 0.8055556.

Example 10.6 (Nearest neighbor test). The permutation test for 7, 3 in
Example 10.5 can be applied using the boot function in the boot package [36]
as follows.

First we write a function to return the matrix of indices NN; of nearest
neighbors.

#continues the previous example

NN.idx <- function(x, tree.type="kd", k=NROW(x)) {
x <- as.matrix(x)
k <- min(c(k+1, NROW(x)))
NN <- yalImpute::ann(ref=x, target=x,
tree.type="kd", k=k, verbose=FALSE)
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idx <- NN$knnIndexDist[,1:k]

nn.idx <- idx[,-1] #first NN is in column 2
row.names (nn.idx) <- idx[,1]

nn.idx

}

Write a function for the statistic argument to boot. The first argument
must be the data, and the second argument must be the index vector.

## function to compute the NN statistic T(n,3)
Tn3 <- function(z, ix=1:NROW(z), sizes) {
z <- as.matrix(z)
nl <- sizes[1]
n2 <- sizes[2]
n <- nl + n2
z <- as.matrix(z[ix, 1)
nn.idx <- NN.idx(z, k=3)
blockl <- nn.idx[1:n1, ]
block2 <- nn.idx[(n1+1):n, ]
il <- sum(blockl < nl + .5)
i2 <- sum(block2 > nl + .5)
return((il + i2) / (3 * n))
}

Use boot: :boot to run the permutation bootstrap test based on the T;, 3

nearest neighbor statistic (10.6).

attach(chickwts)

x <- as.vector(weight[feed == "sunflower"])
y <- as.vector(weight[feed == "linseed"])

z <- C(X, y)

detach(chickwts)

N <- c(NROW(x), NROW(y))

boot.obj <- boot::boot(data = z, statistic = Tn3,
sim = "permutation", R = 999, sizes = N)
boot.obj

tb <- c(boot.obj$t, boot.obj$t0)
mean(tb >= boot.obj$t0)

hist(tb, freq=FALSE, main="",
xlab="replicates of T(n,3) statistic")
points(boot.obj$t0, 0, cex=1, pch=16)

Note: The permutation samples can also be generated by the sample function.

The result of the simulation is
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> boot.obj

DATA PERMUTATION

Call: boot(data = z, statistic = Tn3, R = 999,
sim = "permutation", sizes N)

Bootstrap Statistics :
original bias std. error
t1* 0.8055556 -0.3260066 0.07275428

The output from boot does not include a p-value, of course, because boot
has no way of knowing what hypotheses are being tested. What is printed at
the console is a summary of the boot object. The boot object itself is a list
that contains several things including the permutation replicates of the test
statistic. The test decision can be obtained from the observed statistic in $t0
and the replicates in $t.

> tb <- c(boot.obj$t, boot.obj$t0)
> mean(tb >= boot.obj$t0)
[1] 0.001

The ASL is p = 0.001, so the hypothesis of equal distributions is rejected. The
histogram of replicates of T3, 3 is shown in Figure 10.2.

hist(tb, freq=FALSE, main="",
xlab="replicates of T(n,3) statistic")
points(boot.obj$t0, 0, cex=1, pch=16)

T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8

replicates of T(n,3) statistic

FIGURE 10.2: Permutation distribution of 7}, 3 in Example 10.6.
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The multivariate 7" nearest neighbor test can be implemented by an ap-
proximate permutation test. The steps are to write a general function that
computes the statistic T, , for any given (n1,ng,7) and permutation of the
row indices of the pooled sample. Then apply boot or generate permutations
using sample, similar to the implementation of the permutation test shown
in Example 10.6.

10.3.2 Energy Test for Equal Distributions

The energy distance or e-distance statistic &, is defined by

ni no
ning
En=e(X,Y X; - Y;
o(X.Y) = nﬁnz(wzzu ||

=1 j=1
ny ni n2 N2
99D DIEEPTEELS 95 DIl ) NCLE)
i=1 j=1 2 i=1j=1

On the name “energy” and concept of energy statistics in general see [272, 273].
The non-negativity of e(X,Y) is a special case of the following inequality. If
X, X'",Y,Y" are independent random vectors in R? with finite expectations,

X2 X and Y 2V, then
2E|X —Y| - E|X - X'|| - E|lY =Y'|| >0, (10.8)

and equality holds if and only if X and Y are identically distributed [276, 277].
The & distance between the distribution of X and Y is

E(X.Y) = 2B|X ~ Y| - E|X - X'| - E|Y — Y|

and the empirical distance &, = e(X,Y) is a constant times the plug-in esti-
mator of £(X,Y).

Clearly large e-distance corresponds to different distributions, and mea-
sures the distance between distributions in a similar sense as the univariate
empirical distribution function (edf) statistics. In contrast to edf statistics,
however, e-distance does not depend on the notion of a sorted list, and e-
distance is by definition a multivariate measure of distance between distribu-
tions.

If X and Y are not identically distributed, and n = ny + ng, then E[E,]
is asymptotically a positive constant times n. As the sample size n tends to
infinity, under the null hypothesis E[£,] tends to a positive constant, while
under the alternative hypothesis E[€,] tends to infinity. Not only the expected
value of &,, but &, itself, converges (in distribution) under the null hypothesis,
and tends to infinity (stochastically) otherwise. A test for equal distributions
based on &, is universally consistent against all alternatives with finite first
moments [275, 276]. The asymptotic distribution of &, is a quadratic form
of centered Gaussian random variables, with coefficients that depend on the
distributions of X and Y.
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To implement the test, suppose that Z is the n x d data matrix of the
pooled sample as in (10.5). The permutation operation is applied to the row
indices of Z. The calculation of the test statistic has O(n?) time complexity,
where n = n1 +ny is the size of the pooled sample. (In the univariate case, the
statistic can be written as a linear combination of the order statistics, with
O(nlogn) complexity.)

Example 10.7 (Two-sample energy statistic). The approximate permutation
energy test is implemented in eqdist.etest in the energy package [237].
However, in order to illustrate the details of the implementation for a mul-
tivariate permutation test, we provide an R version below. Note that the
energy implementation is considerably faster than the example below, be-
cause in eqdist.etest the calculation of the test statistic is implemented in
an external C library.

The &, statistic is a function of the pairwise distances between sample el-
ements. The distances remain invariant under any permutation of the indices,
S0 it is not necessary to recalculate distances for each permutation sample.
However, it is necessary to provide a method for looking up the correct dis-
tance in the original distance matrix given the permutation of indices.

edist.2 <- function(x, ix, sizes) {
# computes the e-statistic between 2 samples

# x: Euclidean distances of pooled sample
# sizes: vector of sample sizes

# ix: a permutation of row indices of x
dst <- x

nl <- sizes[1]
n2 <- sizes[2]
ii <= ix[1:n1]
jj <= ix[(n1+1): (n1+n2)]
w <- nl1 * n2 / (n1 + n2)

# permutation applied to rows & cols of dist. matrix
mll <- sum(dst[ii, ii]) / (1 * nl)

m22 <- sum(dst[jj, jjl) / (n2 * n2)

ml2 <- sum(dst[ii, jjl) / (nl * n2)

e <- w * ((m12 + m12) - (m11l + m22))

return (e)

}

Below, the simulated samples in R? are generated from distributions that
differ in location. The first distribution is centered at u; = (0,...,0)T and
the second distribution is centered at us = (a,...,a)T

d <- 3
a <- 2/ sqrt(d)
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x <- matrix(rnorm(20 * d), nrow = 20, ncol = d)

y <- matrix(rnorm(10 * d, a, 1), nrow = 10, ncol = d)
z <- rbind(x, y)

dst <- as.matrix(dist(z))

> edist.2(dst, 1:30, sizes = c(20, 10))
[1] 9.61246

The observed value of the test statistic is &£, = 9.61246. o

The function edist.2 is designed to be used with the boot (boot) func-
tion [36] to perform the permutation test. Alternately, generate the permuta-
tion vectors ix using the sample function. The boot method is shown in the
following example.

R Note 10.2 The energy package

Several examples in this book implement energy statistics or energy
tests, such as Example 10.7 above, distance covariance and distance
correlation in Section 10.4. These examples are implemented in R in
this book because they are interesting programming tasks that are
worth studying and understanding. However, these implementations
in R are generally slower than more efficient versions that are imple-
mented in compiled C / C++. Readers can find the same statistics and
tests are implemented in the energy package for R in compiled code
which is much faster. To apply any energy statistics to real problems,
it is recommended to use the functions in the energy package [237].
See the energy manual for the syntax and usage, as well as examples.

Example 10.8 (Two-sample energy test). This example shows how to apply
the boot function to perform an approximate permutation test using a multi-
variate test statistic function. Apply the permutation test to the data matrix
z in Example 10.7.

library(boot) #for boot function
dst <- as.matrix(dist(z))
N <- c(20, 10)

boot.obj <- boot(data = dst, statistic = edist.2,
sim = "permutation", R = 999, sizes = N)

> boot.obj
DATA PERMUTATION

Call: boot(data = dst, statistic = edist.2, R = 999,
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sim = "permutation", sizes = N)

Bootstrap Statistics :
original bias std. error
tlx 9.61246 -7.286621 1.025068

The permutation vectors generated by boot will have the same length as the
data argument. If data is a vector, then the permutation vector generated
by boot will have length equal to the data vector. If data is a matrix, then
the permutation vector will have length equal to the number of rows of the
matrix. For this reason, it is necessary to convert the dist object to an n xn
distance matrix.

The ASL is computed from the replicates in the bootstrap object.

e <- boot.obj$t0

tb <- c(e, boot.obj$t)
mean(tb >= e)

[1] 0.001

hist(tb, main = "", breaks="scott", freq=FALSE,
xlab="Replicates of e")
points(e, 0, cex=1, pch=16)

None of the replicates exceed the observed value 9.61246 of the test statis-
tic. The approximate achieved significance level is 0.001, and we reject the
hypothesis of equal distributions. Replicates of &,, are shown in Figure 10.3(a).

The large estimate of bias reported by the boot function gives an indication
that the test statistic is large, because £(X,Y) > 0 and £(X,Y) = 0 if and
only if the sampled distributions are equal.

Finally, let us check the result of the test when the sampled distributions
are identical.

d <-3

a<-0

x <- matrix(rnorm(20 * d), nrow = 20, ncol = d)

y <- matrix(rnorm(10 * d, a, 1), nrow = 10, ncol = d)
z <- rbind(x, y)

dst <- as.matrix(dist(z))

N <- c(20, 10)

dst <- as.matrix(dist(z))

boot.obj <- boot(data = dst, statistic = edist.2,
sim="permutation", R=999, sizes=N)

> boot.obj

Bootstrap Statistics :
original bias std. error
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tlx 1.664265 0.7325929 1.051064

e <- boot.obj$t0
E <- c(boot.obj$t, e)

mean(E >= e)
[1] 0.742
hist(E, main = "", breaks="scott",
xlab="Replicates of e", freq=FALSE)
points(e, 0, cex=1, pch=16)

In the second example, the approximate achieved significance level is 0.742 and
the hypothesis of equal distributions is not rejected. Notice that the estimate
of bias here is small. The histogram of replicates is shown in Figure 10.3(b). ¢

Replicates of Replicates of e

(a) (b)

FIGURE 10.3: Permutation distribution of the two-sample e-statistic repli-
cates in Example 10.7.

The £ distance and two-sample e-statistic &, are easily generalized to the
k-sample problem. See the function energy: :edist, which returns a dissimi-
larity object like the dist object.

Example 10.9 (k-sample energy distances). The function edist.2 in Exam-
ple 10.7 is a two-sample version of the function edist in the energy package
[237], which summarizes the empirical £-distances between k > 2 samples.
The syntax is

edist(x, sizes, distance=FALSE, ix=1:sum(sizes), alpha=1)

The argument alpha is an exponent 0 < o < 2 on the Euclidean distance.

It can be shown that for all 0 < o < 2 the corresponding e(®)-distance
determines a statistically consistent test of equal distributions for all random
vectors with finite first moments [276].



286 Statistical Computing with R

Consider the four-dimensional iris data. Compute the e-distance matrix
for the three species of iris.

z <- iris[ , 1:4]
dst <- dist(z)

> energy::edist(dst, sizes = c(50, 50, 50), distance = TRUE)
1 2

2 123.55381

3 195.30396 38.85415

A test for the k-sample hypothesis of equal distributions is based on k-sample
e-distances with a suitable weight function. o

Example 10.10 (Distance Components (disco)). The iris data in Example
10.9 is a three-sample or three-group multivariate data set. The ANOVA test
can of course be applied to test if three normal samples have equal means,
when the variances are equal. However, in this situation, the data is four-
dimensional, so an ANOVA test would not apply, even if the data is mul-
tivariate normal. The multisample energy test based on a decomposition of
distances or distance components (abbreviated as disco) can be applied for
testing whether the three populations or groups are identically distributed.
The disco test does not require normality or equal variance/covariance. The
disco test is based on a weighted version of the k-sample energy distance of
Example 10.9 and a fast implementation of the statistic and permutation test
is provided in the disco function of the energy package. Suppose that we
want to test if there are differences in the iris measurements among the three
species of iris. For a permutation test with 999 permutation replicates:

energy::disco(iris[ , 1:4], factors = iris$Species, R = 999)

Distance Components: index 1.00

Source Df Sum Dist Mean Dist F-ratio p-value
factors 2 119.23731 59.61865 124 .597 0.001
Within 147  70.33848 0.47849

Total 149 189.57579

The test is summarized in a table like an ANOVA table, but the “F” ratio is
not an F statistic. It is ratio of between to within dispersion. The test decision
is based on the permutation test p-value. Here the test is significant and we
can conclude that there are differences among the groups. o

Comparison of nearest neighbor and energy tests

Example 10.11 (Power comparison). In a simulation experiment, we com-
pared the empirical power of the third nearest neighbor test based on T, 3
(10.6) and the energy test based on &, (10.7). The distributions compared,

FIZNQ(,U:(O70)27E:IQ)7 FQZNQ(M:(Oué)T7Z:IQ)7
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differ in location. The empirical power was estimated for § = 0,0.5,0.75,1,
from a simulation of permutation tests on 10,000 pairs of samples. Each per-
mutation test decision was based on 499 permutation replicates (each entry
in the table required 5 - 10° calculations of the test statistic). Empirical re-
sults are given below for selected alternatives, sample sizes, and dimension,
at significance level a = 0.1. Both the &, and T;, 3 statistics achieved approx-
imately correct empirical significance in our simulations (see case § = 0 in
Table 10.1), although the Type I error rate for T, 3 may be slightly inflated
when n is small.

TABLE 10.1: Significant Tests (nearest whole percent
at o = 0.1, se < 0.5%) of Bivariate Normal Location
Alternatives F; = N2((0,0)7, 15), Fy = No((0,6)T, I5)
5=0 =05 0=0.75 f=1
ny UP) gn Tn,3 571 Tn,?) gn Tn,3 gn Tn,3
10 10 10 12 23 19 40 29 58 42
15 15 9 11 30 21 53 34 75 52
20 20 10 12 37 23 64 38 86 58
25 25 10 11 43 25 73 42 93 65
30 30 10 11 48 25 81 47 96 70
40 40 11 10 59 28 90 52 99 78
50 50 10 11 69 29 95 58 100 82
7 75 10 11 85 37 99 69 100 93
100 100 10 10 92 40 100 79 100 100

These alternatives differ in location only, and the empirical evidence summa-
rized in Table 10.1 suggests that &, is more powerful than T}, 3 against this
class of alternatives. o

10.4 Application: Distance Correlation

A test of independence of random vectors X € RP and Y € R?
HoiFXYZFxFY vs Hllny#FxFy

can be implemented as a permutation test. The permutation test does not
require distributional assumptions, or any type of model specification for the
dependence structure. Not many universally consistent nonparametric tests
exist for the general hypothesis above. In this section, we will discuss a recent
multivariate nonparametric test of independence based on distance correla-
tion [279] that is consistent against all dependent alternatives with finite first
moments. The test will be implemented as a permutation test.
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Distance Correlation

Distance correlation is a new measure of dependence between random vec-
tors introduced by Székely, Rizzo, and Bakirov [279]. For all distributions with
finite first moments, distance correlation R generalizes the idea of correlation
in two fundamental ways:

1. R(X,Y) is defined for X and Y in arbitrary dimension.
2. R(X,Y) = 0 characterizes independence of X and Y.

Distance correlation satisfies 0 < R < 1, and R = 0 only if X and Y are
independent. Distance covariance V provides a new approach to the problem
of testing the joint independence of random vectors. The formal definitions of
the population coefficients V and R are given in [279]. The definitions of the
empirical coefficients are as follows.

Definition 10.1. The empirical distance covariance V,(X,Y) is the nonneg-
ative number defined by

1 n
VI(X,Y) = Z Ay B, (10.9)

where Ag; and By are defined in equations (10.11-10.12) below. Similarly,
V. (X) is the nonnegative number defined by

Vi(X) = Vi(X, X) Z A (10.10)

kl 1
The formulas for Ay; and By, in (10.9-10.10) are given by
Ay =ag —ax, —a,.;+a. ; (10.11)
Bi =bi — by, —b+b._, (10.12)
where
arr = || Xk — X1llp, b = || Y — Yillq, k,l=1,...,n,

and the subscript “” denotes that the mean is computed for the index that it
replaces. Note that these formulas are similar to computing formulas in anal-
ysis of variance, so the distance covariance statistic is very easy to compute.
Although it may not be obvious that V2(X,Y) > 0, this fact, as well as the
motivation for the definition of V,, is explained in [279].

Definition 10.2. The empirical distance correlation R, (X,Y) is the square
root of

Vg (X»Y) VQ (X)V2

R%(X,Y)_{ vzxovz(y) o " i (10.13)
0, .
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The asymptotic distribution of n}? is a quadratic form of centered Gaus-
sian random variables, with coefficients that depend on the distributions of
X and Y. For the general problem of testing independence when the distri-
butions of X and Y are unknown, the test based on nV? can be implemented
as a permutation test.

Before proceeding to the details of the permutation test, we implement the
calculation of the distance covariance statistic (dCov).

Example 10.12 (Distance covariance statistic). In the distance covariance
function dCov, operations on the rows and columns of the distance matrix
generate the matrix with entries Ag;. Note that each term

Ay =ap —ar. —a+a.; ar = | Xk — Xi|

is a function of the distance matrix of the X sample. In the function Ak1, the
sweep operator is used twice. The first sweep subtracts a ;, the row means,
from the distances ay;. The second sweep subtracts ay ., the column means,
from the result of the first sweep. (The column means and row means are
equal because the distance matrix is symmetric.) If the samples are x and y,
then the matrix A = (Ay;) is returned by Akl (x) and the matrix B = (By,) is
returned by Akl (y). The remaining calculations are simple functions of these
two matrices.

dCov <- function(x, y) {
X <- as.matrix(x)
y <- as.matrix(y)
n <- nrow(x)
m <- nrow(y)
if (m '=m || n < 2) stop("Sample sizes must agree")
if (! (all(is.finite(c(x, y)))))
stop("Data contains missing or infinite values")

Akl <- function(x) {
d <- as.matrix(dist(x))
<- rowMeans(d)
mean (d)
<- sweep(d, 1, m)
<- sweep(a, 2, m)
return(b + M)

oo =a
0

A <- Ak1(x)
B <- Ak1(y)
dCov <- sqrt(mean(A * B))
dCov
}

A simple example to try out the dCov function is the following. Compute
V. for the bivariate distributions of iris setosa (petal length, petal width) and
(sepal length, sepal width).
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z <- as.matrix(iris([1:50, 1:4])
x <-z[, 1:2]

y <= z[ , 3:4]

# compute the observed statistic
> dCov(x, ¥y)

[1] 0.06436159

The returned value is V,, = 0.06436159. Here n = 50 so the test statistic for
a test of independence is nV2 = 0.207. o

Example 10.13 (Distance correlation statistic). The distance covariance
must be computed to get the distance correlation statistic. Rather than call
the distance covariance function three times, which means repeated calcula-
tion of the distances and the A and B matrices, it is more efficient to combine
all operations in one function.

DCOR <- function(x, y) {
x <- as.matrix(x)
y <- as.matrix(y)
n <- nrow(x)
m <- nrow(y)
if (m '=m || n < 2) stop("Sample sizes must agree")
if (! (all(is.finite(c(x, y)))))
stop("Data contains missing or infinite values")
Akl <- function(x) {
d <- as.matrix(dist(x))

m <- rowMeans(d)
M <- mean(d)
a <- sweep(d, 1, m)
b <- sweep(a, 2, m)
return(b + M)

}

A <- Ak1(x)

B <- Ak1(y)

dCov <- sqrt(mean(A * B))

dVarX <- sqrt(mean(A * A))

dVarY <- sqrt(mean(B * B))

dCor <- sqrt(dCov / sqrt(dVarX * dVarY))

list(dCov=dCov, dCor=dCor, dVarX=dVarX, dVarY=dVarY)
}

Applying the function DCOR to the iris data we obtain all of the distance
dependence statistics in one step.

z <- as.matrix(iris([1:50, 1:4])
x <-z[, 1:2]
y <= z[ , 3:4]
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> unlist(DCOR(x, y))
dCov dCor dVarX dVarY
0.06436159 0.61507138 0.28303069 0.10226284

Permutation tests of independence

A permutation test of independence is implemented as follows. Suppose
that X € R?P and Y € R? and Z = (X,Y). Then Z is a random vector in
RPT4. In the following, we suppose that a random sample is in an n X (p + q)
data matrix Z with observations in rows:

11 12 --- Tip Y11 Y12 --- Yig

T21 X22 ... X2p Y21 Y22 ... Y24
and = . .

Tnl ITn2 --- Tpnp Ynl Yn2 ... Tng

Let v1 be the row labels of the X sample and let 15 be the row labels of the
Y sample. Then (Z, v, ) is the sample from the joint distribution of X and
Y. If X and Y are dependent, the samples must be paired and the ordering
of labels v cannot be changed independently of v;. Under independence, the
samples X and Y need not be matched. Any permutation of the row labels of
the X or Y sample generates a permutation replicate. The permutation test
procedure for independence permutes the row indices of one of the samples
(it is not necessary to permute both vy and vs).

Approximate permutation test procedure for independence
Let 6 be a two-sample statistic for testing multivariate independence.
1. Compute the observed test statistic §(X,Y) = 6(Z,v1, v2).
2. For each replicate, indexed b= 1, ..., B:
(a) Generate a random permutation m, = 7(v2).
(b) Compute the statistic 61 = 6*(Z, m) = O(X,Y*, 7(12)).
3. If large values of 6 support the alternative, compute the ASL by

A A B ) H
1+ #{0® > 4} {1 + 2 100 > 9)}

P= B+1 - B+1

The ASL for a lower-tail or two-tail test based on @ is computed in a
similar way.

4. Reject Hy at significance level a if p < a.
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Example 10.14 (Distance covariance test). This example tests whether the
bivariate distributions (petal length, petal width) and (sepal length, sepal
width) of iris setosa are independent. To implement a permutation test, write
a function to compute the replicates of the test statistic n))2 that takes as its
first argument the data matrix and as its second argument the permutation
vector.

ndCov2 <- function(z, ix, dims) {
#dims contains dimensions of x and y

p <- dims[1]

ql <- p + 1

d <- p + dims[2]

x <-z[ , 1:p] #leave x as is

y <- z[ix, q1:d] #permute rows of y
return(nrow(z) * dCov(x, y)~2)

}

library(boot)

z <- as.matrix(iris[1:50, 1:4])

boot.obj <- boot(data = z, statistic = ndCov2, R = 999,
sim = "permutation", dims = c(2, 2))

tb <- c(boot.obj$t0, boot.obj$t)

hist(tb, nclass="scott", xlab="", main="",
freq=FALSE)

points(boot.obj$t0, 0, cex=1, pch=16)

> mean(tb >= boot.obj$t0)

[1] 0.066

> boot.obj

DATA PERMUTATION

Call: boot(data = z, statistic = ndCov2, R = 999,

sim = "permutation", dims = c(2, 2))
Bootstrap Statistics :
original bias std. error

tlx 0.2071207 -0.05991699  0.0353751

The achieved significance level is 0.066 so the null hypothesis of independence
is rejected at a = 0.10. The histogram of replicates of the dCov statistic is
shown in Figure 10.4. o

One of the advantages of the dCov test is that it is sensitive to all types
of dependence structures in data. Procedures based on the classical definition
of covariance, or measures of association based on ranks are generally less
effective against non-monotone types of dependence. An alternative with non-
monotone dependence is tested in the following example.
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FIGURE 10.4: Permutation replicates of dCov in Example 10.14.

Example 10.15 (Power of dCov). Counsider the data generated by the fol-
lowing nonlinear model. Suppose that

)/’ij:Xijsijv i:l,...,n,j:l,...,B,

where X ~ N5(0,15) and ¢ ~ N5(0,02I5) are independent. Then X and Y
are dependent, but if the parameter o is large, the dependence can be hard
to detect. We compared the permutation test implementation of dCov with
the parametric Wilks Lambda (W) likelihood ratio test [320] using Bartlett’s
approximation for the critical value [194, Section 5.3.2b]. Recall that Wilks
Lambda tests whether the covariance Y12 = Cov(X,Y) is the zero matrix.

From a power comparison with 10,000 test decisions for each of the sample
sizes we have obtained the results shown in Table 10.2 and Figure 10.5. Figure
10.5 shows a plot of power vs. sample size. Table 10.2 reports the empirical
power for a subset of the cases in the plot.

The dCov test is clearly more powerful in this empirical comparison. This
example illustrates that the parametric Wilks Lambda test based on product-
moment correlation is not always powerful against non-monotone types of
dependence. The dCov test is statistically consistent with power approaching
1 as n — oo (theoretically and empirically). o

For properties of distance covariance and distance correlation, proofs of
convergence and consistency, and more empirical results, see [279]. The dis-
tance correlation and covariance statistics and the corresponding permutation
tests are provided in the energy package [237].
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FIGURE 10.5: Empirical power comparison of the distance covariance test
dCov and Wilks Lambda W in Example 10.15.

TABLE 10.2: Example 10.15: Percent of Significant
Tests of Independence of Y = Xe at a = 0.1 (se < 0.5%)

n dCov W n dCov w n dCov w
25 48.56 38.43 55 61.39 42.74 100 75.40 44.36
30 50.89 39.16 60 63.09 42.60 120 79.97 45.20
35 54.56 40.86 65 63.96 42.64 140 84.51 45.21
40 55.79 41.88 70 66.43 43.08 160 87.31 45.17
45 5793 4191 75 6832 4428 180 91.13 45.46
50 59.63 42.05 80 70.27 44.34 200 93.43 46.12

Exercises

10.1 Refer to Example 10.1 and Figure 10.1. Suppose that we want to test
Hy : F = G, where F is the distribution of weight for the casein
feed group and G is the distribution of weight for the sunflower feed
group of the chickwts data. A test can be based on the two-sample
Kolmogorov-Smirnov statistic as shown in Example 10.1. Display a his-
togram of the permutation replicates of the Kolmogorov-Smirnov two-
sample test statistic for this test. Is the test significant at o = 0.107

10.2 Write a function to compute the two-sample Cramér—von Mises statistic.
The Cramér—von Mises distance between distributions is

= [ [ - 6Py
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where H(x,y) is the joint CDF of X and Y. For a test of equal distri-
butions, the corresponding test statistic is based on the joint empirical
distributions, so it is a function of the ranks of the data [15]. First,
compute the ranks r; of the X sample, ¢ = 1,...,n, and the ranks s; of
the Y sample, j =1,...,m (see the rank functlon) Compute

—nz ; — 1) +mz

Note that U can be vectorized and evaluated in one line of R code. Then
the Cramér—von Mises two-sample statistic is

U dmn — 1

2 _ _
W= nm(n+m) 6(m-+mn)

(10.14)

Large values of W?2 are significant.

Implement the two-sample Cramér-von Mises test for equal distribu-
tions as a permutation test using (10.14). Apply the test to the data in
Examples 10.1 and 10.2.

An rt" Nearest Neighbors test statistic for equal distributions:

Write a function (for the statistic argument of the boot function) to
compute the test statistic T}, , (10.6). The function syntax should be

Tnr(z, ix, sizes, nn)

with the data matrix z as its first argument, and an index vector ix as
the second argument. The vector of sample sizes sizes and the number
of nearest neighbors nn should be the third and fourth arguments. (See
the ann function in package yaImpute and Example 10.6.)

The iris data is a four-dimensional distribution with measurements on
three species of iris flowers. Using your function Tnr of Exercise 10.10.4
and the boot function, apply your nearest neighbors statistic (r = 2) to
test Hy : F = G, where F is the distribution of the iris setosa species,
and G is the distribution of the iris virginica species. Repeat the test
with » = 3 and r = 4.

A commonly applied statistic for dependence is Pearson’s product-
moment correlation R (13.2). For bivariate normal data, independence
holds if and only if the population correlation coefficient p is zero. One
can apply a t-test of independence based on R. For non-normal data, a
test based on ranks is often applied. However, a test for zero correlation
is not a test for independence when the data are non-normal. It is pos-
sible that uncorrelated variables are dependent. Consider the following
example where Y = X2,

x <- runif (100, -1, 1)
y <- x72
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Clearly X and Y are dependent.
a. Show that if X ~ Uniform(-1, 1) and Y = X2 then p(X,Y) = 0.

b. Apply the correlation t-test to the simulated data (x, y) using
cor.test to test the null hypothesis Hy : p(X,Y) = 0 vs Hy :
p(X,Y) # 0. Is the null hypothesis p = 0 rejected?

c. Test Hy: X,Y are independent vs. H; : X,Y are dependent using
the distance covariance test. (Use dcov.test in the energy package
or follow Example 10.14.) Is the null hypothesis of independence
rejected?

d. Discuss and compare the results of both tests.

The Count 5 test for equal variances in Section 7.4 is based on the max-
imum number of extreme points. Example 7.15 shows that the Count 5
criterion is not applicable for unequal sample sizes. Implement a permu-
tation test for equal variance based on the maximum number of extreme
points that applies when sample sizes are not necessarily equal. Repeat
Example 7.15 using the permutation test.

Projects

10.A

10.B

Replicate the power comparison in Example 10.11, reducing the number
of permutation tests from 10000 to 2000 and the number of replicates
from 499 to 199. Use the energy: :eqdist.etest version of the energy
test.

The aml (boot) [36] data contains estimates of the times to remission
for two groups of patients with acute myelogenous leukaemia (AML).
One group received maintenance chemotherapy treament and the other
group did not. See the description in the aml data help topic. Following
Davison and Hinkley [68, Example 4.12], compute the log-rank statistic
and apply a permutation test procedure to test whether the survival
distributions of the two groups are equal.



Chapter 11

Markov Chain Monte Carlo Methods

11.1 Introduction

Markov Chain Monte Carlo (MCMC) methods encompass a general frame-
work of methods introduced by Metropolis et al. [206] and Hastings [145] for
Monte Carlo integration. Recall (see Section 6.2) that Monte Carlo integration

estimates the integral
/ o(t)dt
A

with a sample mean, by restating the integration problem as an expectation
with respect to some density function f(-). The integration problem then is
reduced to finding a way to generate samples from the target density f(-).

The MCMC approach to sampling from f(-) is to construct a Markov chain
with stationary distribution f(-), and run the chain for a sufficiently long time
until the chain converges (approximately) to its stationary distribution.

This chapter is a brief introduction to MCMC methods, with the goal of
understanding the main ideas and how to implement some of the methods in
R. In the following sections, methods of constructing the Markov chains are
illustrated, such as the Metropolis and Metropolis-Hastings algorithms, and
the Gibbs sampler, with applications. Methods of checking for convergence are
briefly discussed. In addition to references listed in Section 6.1, see Casella and
George [41], Chen, Shao, and Ibrahim [49], Chib and Greenberg [52], Gamer-
man [107], Gamerman and Lopes [108], Gelman et al. [112], or Tierney [287].
For a thorough, accessible treatment with applications, see Gilks, Richard-
son, and Spiegelhalter [125]. For reference on Monte Carlo methods including
MCMC methods see Robert and Casella [238, 240].

11.1.1 Integration Problems in Bayesian Inference

Many applications of Markov Chain Monte Carlo methods are problems
that arise in Bayesian inference. From a Bayesian perspective, in a statistical
model both the observables and the parameters are random. Given observed
data = {z1,...,2,}, and parameters 6,  depends on the prior distribution
fo(0). This dependence is expressed by the likelihood f(z1,...,z,|6). The

297
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joint distribution of (z,0) is therefore

fI79(.'L‘, 9) = fzw(xl, e ,$n|9)f9(9)

One can then update the distribution of # conditional on the information in the
sample © = {x1,...,2,}, so that by Bayes Theorem the posterior distribution
of 6 is given by

fm\e(ﬂ?h-- Jin|9)fe(‘9) _ fx|9(95)f9(9)

Then the conditional expectation of a function g() with respect to the pos-
terior density is

. 0
Blo(012)) = [ 9(0) 0. 0)a0 = 1 : f;; o(@ § O
To state the problem in more general terms,
Elg(Y)] = JoOr(t) dt (11.2)

[w(t)dt ’

where 7(-) is (proportional to) a density or a likelihood If 7r( ) is a density
function, then (11.2) is just the usual definition E[g = [g(t)

If 7(-) is a likelihood, then the normalizing constant in the denomlnator is
needed. In Bayesian analysis, 7(-) is a posterior density. The expectation (11.2)
can be evaluated even if 7(-) is known only up to a constant. This simplifies the
problem because in practice the normalizing constant for a posterior density
Jo)2(0) is often difficult to evaluate.

The practical problem, however, is that the integrations in (11.2) are often
mathematically intractable, and difficult to compute by numerical methods,
especially in higher dimensions. Markov Chain Monte Carlo provides a method
for this type of integration problem.

11.1.2 Markov Chain Monte Carlo Integration
The Monte Carlo estimate of E[g = [g(0 ) fo12(0)d0 is the sample mean

i

where x1,...,Zm, is a sample from the distribution with density fo,. If
Z1,...,%y, are independent (it is a random sample), then by the laws of large
numbers, the sample mean g converges in probability to F[g(#)] as sample size
m tends to infinity. In this case, one can in principle draw as large a Monte
Carlo sample as required to obtain the desired precision in the estimate g.
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Here the first “MC” in “MCMC” is not needed; Monte Carlo integration can
be used.

However, in a problem such as (11.1) it may be quite difficult to imple-
ment a method for generating independent observations from the density fy|, .
Nevertheless, even if the sample observations are dependent, a Monte Carlo
integration can be applied if the observations can be generated so that their
joint density is roughly the same as the joint density of a random sample.
This is where the first “MC” comes to the rescue. Markov Chain Monte Carlo
methods estimate the integral in (11.1) or (11.2) by Monte Carlo integra-
tion, and the Markov Chain provides the sampler that generates the random
observations from the target distribution.

By a generalization of the strong law of large numbers, if {X(,X7,Xo,...}
is a realization of an irreducible, ergodic Markov Chain with stationary dis-
tribution 7, then

90X, = > (X))

converges with probability one to E[g(X)] as m — oo, where X has the sta-
tionary distribution 7 and the expectation is taken with respect to = (provided
the expectation exists).

For a brief review of discrete-time discrete-state-space Markov chains, see
Section 2.8. For an introduction to Markov chains and stochastic processes
see Ross [251].

11.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithms are a class of Markov Chain Monte
Carlo methods including the special cases of the Metropolis sampler, the Gibbs
sampler, the independence sampler, and the random walk. The main idea
is to generate a Markov Chain {X;|t = 0,1,2,...} such that its stationary
distribution is the target distribution. The algorithm must specify, for a given
state X¢, how to generate the next state X; 1. In all of the Metropolis-Hastings
(M-H) sampling algorithms, there is a candidate point Y generated from a
proposal distribution g(-|X;). If this candidate point is accepted, the chain
moves to state Y at time ¢ + 1 and X1 = Y; otherwise the chain stays in
state Xy and X1 = X;. Note that the proposal distribution can depend on
the previous state X;. For example, if the proposal distribution is normal, one
choice for g(-|X;) might be Normal(y; = X, 0?) for some fixed o2.

The choice of proposal distribution is very flexible, but the chain gener-
ated by this choice must satisfy certain regularity conditions. The proposal
distribution must be chosen so that the generated chain will converge to a sta-
tionary distribution — the target distribution f. Required conditions for the
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generated chain are irreducibility, positive recurrence, and aperiodicity (see
[241]). A proposal distribution with the same support set as the target distri-
bution will usually satisfy these regularity conditions. Refer to [129, Ch. 7-8],
[240, Ch. 7] or [241] for further details on the choice of proposal distribution.

11.2.1 Metropolis-Hastings Sampler

The Metropolis-Hastings sampler generates the Markov chain {Xg, X5,... }
as follows.

1. Choose a proposal distribution ¢(-|X;) (subject to regularity conditions
stated above).

2. Generate X from a distribution g.

3. Repeat (until the chain has converged to a stationary distribution ac-
cording to some criterion):

(a) Generate Y from g(-|Xy).
(b) Generate U from Uniform(0,1).
(c) If
- JgXY)
T f(X)g(YXy)
accept Y and set X,y = Y; otherwise set Xy 11 = X;.
(d) Increment ¢.

Observe that in step (3c) the candidate point Y is accepted with probability

F(Y)g(X:|Y) >
f(X1)g(Y]Xy) ’

so that it is only necessary to know the density of the target distribution f
up to a constant.

Assuming that the proposal distribution satisfies the regularity conditions,
the Metropolis-Hastings chain will converge to a unique stationary distribu-
tion 7. The algorithm is designed so that the stationary distribution of the
Metropolis-Hastings chain is indeed the target distribution, f.

Suppose (1, s) are two elements of the state space of the chain, and without
loss of generality suppose that f(s)g(r|s) > f(r)g(s|r). Thus, a(r,s) =1 and
the joint density of (X, Xty1) at (r,s) is f(r)g(s|r). The joint density of
(XtaXt-‘rl) at (8,7‘) is

a(X,Y) = min <1, (11.3)

F()g(r]s) als,r) = F()g(rs) (
The transition kernel is

K(ri8) = a(rs)g(slr) + 1 =1) |1~ [ (r9gtelras].
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(The second term in K(r,s) arises when the candidate point is rejected and
Xi+1 = X;.) Hence, we have the system of equations

olr ) [(P)gslr) = a(s,r) F()g(r]s),
I(s =) [1 - [@ s)g(sr)ds]f(rﬂ (=) [1 = [G.rgtrlsast s

for the Metropolis-Hastings chain, and f satisfies the detailed balance condi-
tion K(s,7r)f(s) = K(r,s)f(r). Therefore f is the stationary distribution of
the chain. See Theorems 6.46 and 7.2 in [240].

Example 11.1 (Metropolis-Hastings sampler). Use the Metropolis-Hastings
sampler to generate a sample from a Rayleigh distribution. The Rayleigh
density [162, (18.76)] is

flx) = % 6,952/(202), x>0,0>0.
o

The Rayleigh distribution is used to model lifetimes subject to rapid aging,
because the hazard rate is linearly increasing. The mode of the distribution is
at o, E[X] = oy/7/2 and Var(X) = 0?(4 — ) /2.

For the proposal distribution, try the chi-squared distribution with degrees
of freedom X;. Implementation of a Metropolis-Hastings sampler for this ex-
ample is as follows. Note that the base of the array in R is 1, so we initialize
the chain at X in x[1].

1. Set g(+|X) to the density of x?(X).
2. Generate X from distribution x?(1) and store in x[1].
3. Repeat fori=2,..., N:

(a) Generate Y from x?(df = X;)

(b) Generate U from Uniform(0, 1).
(¢) With X; = x[i-1], compute

X2 (df=x[i-1]).

fYV)g(X:]Y)

F(X)g(Y[Xe)
where f is the Rayleigh density with parameter o, g(Y'|X}) is the
2(df = X;) density evaluated at Y, and g(X;|Y) is the x?(df = Y)
density evaluated at X;.
IfU <r(X:,Y) accept Y and set X;11 = Y; otherwise set X1 =
Xy. Store X;4q in x[1].

(d) Increment ¢.

T(Xt,Y) =

The constants in the densities cancel, so

—y? 0'2 Tt Tt 2-1 —T¢
F@glaily) _ ye "2 T(g)2m ey e
FCrgtle) e 27 < T(E2 T ool

r(we,y) =
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This ratio can be simplified further, but in the following simulation for clarity
we will evaluate the Rayleigh and chi-square densities separately. The follow-
ing function evaluates the Rayleigh(o) density.

f <- function(x, sigma) {

if (any(x < 0)) return (0)

stopifnot(sigma > 0)

return((x / sigma™2) * exp(-x"2 / (2*sigma~2)))
}

In the simulation below, a Rayleigh(c = 4) sample is generated using the
chi-square proposal distribution. At each transition, the candidate point Y is
generated from x?(v = X;_1)

xt <- x[i-1]
y <- rchisq(l, df = xt)

and for each y, the numerator and denominator of r(X;_1,Y") are computed in
num and den. The counter k records the number of rejected candidate points.

m <- 10000

sigma <- 4

x <- numeric(m)

x[1] <- rchisq(1l, df=1)
k <-0

u <- runif (m)

for (i in 2:m) {
xt <- x[i-1]
y <- rchisq(l, df = xt)
num <- f(y, sigma) * dchisq(xt, df = y)
den <- f(xt, sigma) * dchisq(y, df = xt)
if (uli]l <= num/den) x[i] <- y else {

x[i] <- xt
k <- k+1 #y is rejected
}
}
> print (k)
[1]1 4009

In this example, approximately 40% of the candidate points are rejected, so
the chain is somewhat inefficient.

To see the generated sample as a realization of a stochastic process, we can
plot the sample vs. the time index. The following code will display a partial
plot starting at time index 5000.

index <- 5000:5500
y1 <- x[index]
plot(index, y1, type="1", main="", ylab="x")
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The plot is shown in Figure 11.1. Note that at times the candidate point is
rejected and the chain does not move at these time points; this corresponds

to the short horizontal paths in the graph. o
o
o —
X  © -
v —
~ 4
T T T T T T
5000 5100 5200 5300 5400 5500
index

FIGURE 11.1: Part of a chain generated by a Metropolis-Hastings sampler
of a Rayleigh distribution in Example 11.1.

Example 11.1 is a simple example intended to illustrate how to implement
a Metropolis-Hastings sampler. There are better ways to generate samples
from Rayleigh distributions. In fact, an explicit formula for the quantiles of
the Rayleigh distribution are given by

z, = F1(q) = o{—2log(1 — q)}'/?, 0<g<l. (11.4)

Using F~! one could write a simple generator for Rayleigh using the inverse
transform method of Section 3.2.1 with antithetic sampling (Section 6.4).

Example 11.2 (Example 11.1, cont.). The following code compares the quan-
tiles of the target Rayleigh(o = 4) distribution with the quantiles of the gen-
erated chain in a quantile-quantile plot (QQ plot).

b <- 2001 #discard the burnin sample

y <= x[b:m]

a <- ppoints(100)

QR <- sigma * sqrt(-2 * log(l - a)) #quantiles of Rayleigh
Q <- quantile(y, a)

qqplot(QR, Q, main="", cex=.5,
xlab="Rayleigh Quantiles", ylab="Sample Quantiles")
abline(0, 1)

hist(y, breaks="scott", main="", xlab="", freq=FALSE)
lines(QR, £f(QR, 4))

The histogram of the generated sample with the Rayleigh(c = 4) density
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superimposed is shown in Figure 11.2(a) and the QQ plot is shown in Figure
11.2(b). The QQ plot is an informal approach to assessing the goodness-of-fit
of the generated sample with the target distribution. From the plot, it appears
that the sample quantiles are in approximate agreement with the theoretical
quantiles. o
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FIGURE 11.2: Histogram with target Rayleigh density and QQ plot for a
Metropolis-Hastings chain in Example 11.1.

Next, we cover a Bayesian prediction application implementing a
Metropolis-Hastings sampler for a beta-binomial model. The MCMC estimate
of the posterior mode, percentile interval, and highest posterior density inter-
val for the derived parameter is computed.

Example 11.3 (Expected lifetime beta-binomial model). Suppose that the
failure times of NV iid machine parts are observed over M months. Some parts
do not fail during the study period, so their failure time is unobserved. Our
goal is to develop a model for predicting the expected future lifetime (also
called the mean residual lifetime) of a randomly selected item from this pop-
ulation. It may be reasonable to assume that the population is not subject to
aging so that an exponential model is appropriate. If we measure time dis-
cretely, the discrete version of the exponential model is the geometric survival
model. In a geometric model, the probability that an individual survives k
periods is
Pr(T = k) =p"(1 - p), k=0,1,2,...

and the expected future lifetime of an individual is E[T] = .

Suppose that N = 20 parts are tested for 24 hours and four failure times
are recorded as follows:

5.1, 14.0, 14.6, 14.7,
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while all other parts survived with unobserved failure times. If we regard each
hour of testing as a Bernoulli trial, then we have a total of 16(24) +5+14(3) =
431 successes and four failures during the 24-hour test period for a total of 435
trials. A MLE estimate of p is therefore p = 431/435 = 0.990806. However,
we require the distribution of g(p) = p/(1 — p). A Bayesian approach has the
advantage that once the posterior distribution of p is known, the distribution
of g(p) is completely specified.

Assume a Uniform(0, 1) prior distribution for p. It can be shown (see,
e.g., [69, Chapter 6]) that the posterior distribution of p given the data is
Beta(431 + 1,4 + 1). Thus, the posterior density of p is

p?a-p)t

= <p<l1
fp(p) B(432,5) ’ O_p_ I

where B(a,b) is the complete beta function.

We are interested in the distribution of the derived parameter pu = g(p) =
p/(1 — p), the expected future lifetime. It is easy to derive this density from
the posterior density f, as

fu() = fp <1iu> ﬁ

~ B(432,5) \1+p T+p) (T+wp)?

This density should be evaluated using logarithms for numerical stability. A
plot of the density is shown in Figure 11.3.

f.mu <- function(x) {
exp(- 1lbeta(432, 5) + 431 * log(x) -
431 * log(l + x) - 6 * log(l + x))
}

curve(f.mu(x), from=0, to=400, xlab="hours", ylab="")

0.008
I

0.004
I

0.000
I

0 100 200 300 400

hours

FIGURE 11.3: Posterior density of expected future lifetime.
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The next step is to simulate from the posterior density of the derived
parameter (in this case, expected residual lifetime).

A Metropolis-Hastings algorithm can be applied to generate replicates of
w(p) using MCMC. For the proposal distribution, we could consider distribu-
tions that are supported on (0, o), such as exponential, x2, Weibull, Rayleigh,
etc. Knowing that the mode of f, is positive, exponential does not seem like
the best choice.

For simplicity, we select the x?(X;) proposal distribution, where X; is
the current value in the chain. For x2(X;), this choice puts the mean of the
proposal distribution at the current value of the chain. Let f denote the target
density of y and g denote the density of a x2(X;) distribution.

Note that g(X;|y) is the density of a x?(df = y) distribution evaluated
at X;, and g(y|X;) is the density of a x?(df = X;) distribution evaluated
at y. The algorithm is outlined in Section 11.2.1 and the implementation of
the algorithm is similar to Example 11.1. The ratio f,(Y)/fu.(X¢) can be

simplified to
(y/2)H (1 +2) /(1 +y))*T,
and computed with logarithms using function fr:

fr <- function(x, y) {
a <- 431 * (log(y) - log(x))
b <= 437 * (log(1+x) - log(l+y))
return(exp(a + b))

}
Then to generate a chain of length 10000, randomly initialized:

m <- 10000
X <- numeric(m)
x[1] <- rchisq(1l, df=1) #initialize chain
k<-0
u <- runif(m)
for (i in 2:m) {
xt <- x[i-1]
y <- rchisq(l, df = xt)
r <- fr(xt, y) * dchisq(xt, df=y) / dchisq(y, df=xt)
if (uli] <= r) x[i] <- y else {
x[i] <- xt

k <- k+1 #y is rejected
}
}
We counted the number of points rejected to help monitor convergence.
> k
[1] 1094

> plot(acf(x))
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The proportion rejected is 0.1094. Based on the high acceptance rate and the
plot of the auto-correlation function (ACF) of the chain in Figure 11.4(a), the
chain does not appear to be mixing well. o

Example 11.4 (Expected lifetime M-H sampler, continued). In order to im-
prove the generated output, we can consider a different proposal distribution.
The chi-square proposal distribution has only one parameter with no free
parameter to adjust for tuning. The gamma distribution is a two-parameter
family that contains the chi-square distribution as a special case. Repeat the
MCMC algorithm above, replacing the proposal distribution g(y|z) with a
gamma density with shape a. Then the expected value of the proposal distri-
bution is a/b, where b is the rate parameter. We set a/b = X; so that b = a/X;.
That is, the conditional proposal density is Gamma(shape=a, rate=a/X}),
with a a pre-specified constant. The constant a is a tuning parameter. We ran
a few preliminary chains to choose a suitable value of a and found that a = 4
works well for this problem.

11111

ACF
ACF

(a) (b)

FIGURE 11.4: Autocorrelation plots for two MCMC chains simulating the
posterior distribution of mean residual lifetime.

# MCMC Metropolis-Hastings with gamma proposal

m <- 10000

X <- numeric(m)

a <-4

x[1] <- rlnorm(1) #initialize chain
k <- 0

u <- runif (m)
for (i in 2:m) {
xt <= x[i-1]
y <- rgamma(l, shape=a, rate=a/xt)
r <- fr(xt, y) * dgamma(xt, shape=a, rate=a/y) /
dgamma(y, shape=a, rate=a/xt)
if (uli] <= r) x[i] <- y else {
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x[i] <- xt
k <- k+1 #y is rejected
b

}

Again, we do some simple checks on the output.

>k /m #proportion rejected
[1] 0.3305
> plot(acf (x))

This chain with gamma shape parameter set to 4 appears to be mixing well
based on the rejection rate 0.3305 and ACF plot in Figure 11.4(b). o

Example 11.5 (Learning about the distribution of mean future lifetime).
With the output of the (second) MCMC chain in Example 11.4, we can learn
about the distribution of the expected lifetime of the population of machine
parts tested. To visualize the sample generated by this chain, we display a
probability histogram after discarding a burn-in sample. The derived density
fu is plotted over the histogram for reference. The mode can be estimated
from the return value of the histogram, which is at 75 hours.

burnin <- m/2

X <- x[-(1:burnin)]

hist (X, prob=TRUE, breaks="scott", xlab=bquote(psi),
main="MCMC replicates using gamma proposal") -> h

curve(f.mu(x), add=TRUE)

i <- which.max(h$density) #estimating the mode

h$mids [i]

[1]1 75

With the shape parameter of the gamma proposal distribution set to 4, we es-
timated the posterior mode at 75 hours. (In this example, the posterior density
is simple enough that one can easily derive the posterior mode analytically,
which is 71.83 hours.)

The histogram of the replicates of 1 is shown with the target density f,(u)
in Figure 11.5.

A 95% percentile interval based on the generated chain can be computed
from the quantiles as:

> q <- quantile(X, c(.025, .975), type=1)
> round(q, 1) #hours

2.5% 97.5%

41.8 264.7

To estimate the p% highest posterior density interval (HPDI) from the em-
pirical CDF of the generated MCMC replicates, compute the shortest interval
such that the difference in the ecdf values at the endpoints equals p%. The
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FIGURE 11.5: Histogram of a Metropolis-Hastings chain (gamma proposal)
for the expected lifetime p with target density of u.

following is a simple implementation for a single MCMC chain and one pa-
rameter. For multiparameter problems and/or multiple MCMC chains, see
HPDinterval in the coda package.

HPDi <- function(x, prob = 0.95) {
## HPD interval for a single MCMC chain (a vector)
x <- sort(x)
n <- length(x)
m <- floor(prob * n)
i<-1:(n-m
L <- x[i + m] - x[i]
best <- which.min(L)
return (c(lower=x[best], upper=x[best+m]))

}

> HPDi(X)
lower upper
34.7996 224.6842

Table 11.1 compares two interval estimates for p from the second MCMC
simulation with the gamma proposal distribution: the 95% percentile interval
and the 95% HPDI for u. o
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TABLE 11.1: Interval Estimates for the Expected
Lifetime p Hours

Method Interval estimate
MCMC (2.5th, 97.5th) percentiles (41.8 264.7)
HPDI for p (34.8, 224.7)

11.2.2 The Metropolis Sampler

The Metropolis-Hastings sampler [145, 206] is a generalization of the Metropo-
lis sampler [206]. In the Metropolis algorithm, the proposal distribution is
symmetric. That is, the proposal distribution g(-|X;) satisfies

9(X]Y) = g(Y|X),
so that in (11.3) the proposal distribution g cancels from
f(YV)g(X:]Y)
r(Xy,Y) = ,
KX = R0e(V150)
and the candidate point Y is accepted with probability

o) =i (1, 100,

11.2.3 Random Walk Metropolis

The random walk Metropolis sampler is an example of a Metropolis sam-
pler. Suppose the candidate point Y is generated from a symmetric proposal
distribution g(Y'|X:) = ¢g(|X+ — Y|). Then at each iteration, a random incre-
ment Z is generated from g(-), and Y is defined by Y = X; + Z. For example,
the random increment might be normal with zero mean, so that the candidate
point is Y| X; ~ Normal(X;,o?) for some fixed o2 > 0.

Convergence of the random walk Metropolis is often sensitive to the choice
of scale parameter. When variance of the increment is too large, most of
the candidate points are rejected and the algorithm is very inefficient. If the
variance of the increment is too small, the candidate points are almost all
accepted, so the random walk Metropolis generates a chain that is almost
like a true random walk, which is also inefficient. One approach to selecting
the scale parameter is to monitor the acceptance rates, which should be in
the range [0.15, 0.5] [242]. Gelman, Roberts and Gilks [113] give the heuristic
strategy for random walk Metropolis in practice, to “choose the scaling . ..so
that the average acceptance rate of the algorithm is roughly 1/4.

Example 11.6 (Random walk Metropolis). Implement the random walk ver-
sion of the Metropolis sampler to generate the target distribution Student ¢
with v degrees of freedom, using the proposal distribution Normal(X;,o?).
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In order to see the effect of different choices of variance of the proposal distri-
bution, try repeating the simulation with different choices of o.
The t(v) density is proportional to (1 + 22/v)~#+1/2 o

2\ ~(v41)/2
1+ £
r@y) = J{((;t)) - E x%(m)/r

1+ -+
In this simulation below, the ¢ densities in (z;_1,y) will be computed by the
dt function. Then y is accepted or rejected and X; generated by

if (uli] <= dt(y, n) / dt(x[i-1], n))
x[i] <~y

else
x[i] <- x[i-1]

These steps are combined into a function to generate the chain, given the
parameters n and o, initial value Xy, and the length of the chain, N.

rw.Metropolis <- function(n, sigma, x0, N) {
x <- numeric(N)

x[1] <- x0
u <- runif (N)
k <- 0

for (i in 2:N) {
y <- rnorm(1l, x[i-1], sigma)
if (uli] <= (dt(y, n) / dt(x[i-1], n)))
x[i] <- y else {
x[i] <- x[i-1]
k<-k +1
}
}
return(list (x=x, k=k))
}

Four chains are generated for different variances o2 of the proposal distribu-
tion.

n <- 4 #degrees of freedom for target Student t dist.
N <- 2000
sigma <- c¢(.05, .5, 2, 16)

x0 <- 25

rwl <- rw.Metropolis(n, sigmal[1], x0, N)
rw2 <- rw.Metropolis(n, sigma[2], x0, N)
rw3 <- rw.Metropolis(n, sigma[3], x0, N)
rw4d <- rw.Metropolis(n, sigma[4], x0, N)
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#number of candidate points rejected
> print(c(rwi$k, rw2$k, rw3sk, rwid$k))
[1] 14 136 891 1798

Only the third chain has a rejection rate in the range [0.15, 0.5]. The plots in
Figure 11.6 show that the random walk Metropolis sampler is very sensitive
to the variance of the proposal distribution. Recall that the variance of the
t(v) distribution is v/(v — 2), v > 2. Here v = 4 and the standard deviation
of the target distribution is v/2.

In the first plot of Figure 11.6 with o = 0.05, the ratios r(X;,Y") tend to be
large and almost every candidate point is accepted. The increments are small
and the chain is almost like a true random walk. Chain 1 has not converged
to the target in 2000 iterations. The chain in the second plot generated with
o = 0.5 is converging very slowly and requires a much longer burn-in period.
In the third plot (o = 2) the chain is mixing well and converging to the target
distribution after a short burn-in period of about 500. Finally, in the fourth
plot, where o = 16, the ratios (X, Y') are smaller and most of the candidate
points are rejected. The fourth chain converges, but it is inefficient. o

Example 11.7 (Example 11.6, cont.). Usually in MCMC problems, one does
not have the theoretical quantiles of the target distribution available for com-
parison, but in this case the output of the random walk Metropolis chains in
Example 11.6 can be compared with the theoretical quantiles of the target
distribution. Discard the burn-in values in the first 500 rows of each chain.
The quantiles are computed by the apply function (applying quantile to
the columns of the matrix). The quantiles of the target distribution and the
sample quantiles of the four chains rwl, rw2, rw3, and rw4 are in Table 11.2.

a <- c(.05, seq(.1, .9, .1), .95)

Q <- qt(a, n)

rw <- cbind(rwi$x, rw2$x, rw3dx, rwid$x)

mc <- rw[501:N, 1]

Qrw <- apply(mc, 2, function(x) quantile(x, a))

print (round(cbind(Q, Qrw), 3)) #not shown
xtable: :xtable(round(cbind(Q, Qrw), 3)) #latex format

R Note 11.1

Table 11.2 was exported to M TEXformat by the xtable function in the
xtable package [66].
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FIGURE 11.6: Random walk Metropolis chains generated by proposal dis-
tributions with different variances in Example 11.6.

Example 11.8 (Bayesian inference: A simple investment model). In gen-
eral, the returns on different investments are not independent. To reduce risk,
portfolios are sometimes selected so that returns of securities are negatively
correlated. Rather than the correlation of returns, here the daily performance
is ranked. Suppose five stocks are tracked for 250 trading days (one year),
and each day the “winner” is picked based on maximum return relative to
the market. Let X; be the number of days that security ¢ is a winner. Then
the observed vector of frequencies (x1,...,25) is an observation from the
joint distribution of (X7, ..., X5). Based on historical data, suppose that the
prior odds of an individual security being a winner on any given day are
[1:(1-=75):(1—-28):28:p], where 8 € (0,0.5) is an unknown parameter.
Update the estimate of 8 for the current year of winners.

According to this model, the multinomial joint distribution of X, ..., X5
has the probability vector

<1 (1-8) (1-28) 28 ﬂ)
P=\3"3 "3 '3'3)
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TABLE 11.2: Quantiles of Target
Distribution and Chains in Example 11.7

Q rwl w2 w3 rw4

5% —2.13 23.66 —1.16 —-1.92 —-2.40
10% —-1.53 23.77 -0.39 —-1.47 -1.35
20% —0.94 2399 0.67 —-1.01 —0.90
30% —0.57 24.29 4.15 —-0.63 —0.64
40% —0.27 24.68 9.81 —0.25 —0.47
50%  0.00 25.29 17.12 0.01 -0.15
60%  0.27 26.14 18.75  0.27  0.06
70%  0.57 26.52 21.79  0.59  0.25
80%  0.94 26.93 2542 092 0.52
90% 1.53 27.27 28.51 1.55 1.18
95% 213 2739 29.78 237 1.90

The posterior distribution of 8 given (z1,...,x5) is therefore

250!

T1,,T2
x1!z2!x3!x4!x5!p

Prifl(zy, ..., 25)] = 1'P5°P5° Py P5’

In this example, we cannot directly simulate random variates from the
posterior distribution. One approach to estimating /5 is to generate a chain
that converges to the posterior distribution and estimate g from the gener-
ated chain. Use the random walk Metropolis sampler with a uniform proposal
distribution to generate the posterior distribution of 8. The candidate point
Y is accepted with probability

o) i (1, 1),

The multinomial coefficient cancels from the ratio in «(X,Y), so that

f) _ (A3)"((L=Y)/3)™((1 = 2Y)/3)"* ((2Y)/3)™ (Y/3)"

FX) (1/3)m((1 = X)/3)72((1 - 2X)/3) ((2X)/3)7+(X/3)*>
The ratio can be further simplified, but the numerator and denominator are
evaluated separately in the implementation below. In order to check the re-
sults, start by generating the observed frequencies from a distribution with
specified f.

b <- .2 #actual value of beta

w <- .25 #width of the uniform support set
m <- 5000 #length of the chain

burn <- 1000 #burn-in time

days <- 250

x <- numeric(m) #the chain
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# generate the observed frequencies of winners

i <- sample(l:5, size=days, replace=TRUE,
prob=c(1, 1-b, 1-2xb, 2*b, b))

win <- tabulate(i)

> print(win)

(1] 82 72 45 34 17

The tabulated frequencies in win are the simulated numbers of trading days
that each of the stocks were the daily winner. Based on this year’s observed
distribution of winners, we want to estimate the parameter 3.

The following function prob computes the target density (without the
constant).

prob <- function(y, win) {
# computes (without the constant) the target density
if (y <0 |l y>= 0.5)
return (0)
return((1/3) “win[1] =
((1-y)/3)~win[2] * ((1-2xy)/3) win[3] *
((2%y)/3)~win[4] * (y/3)"win[5])
}

Finally the random walk Metropolis chain is generated. Two sets of uniform
random variates are required: one for generating the proposal distribution and
another for the decision to accept or reject the candidate point.

u <- runif(m) #for accept/reject step
v <- runif(m, -w, w) #proposal distribution
x[1] <- .25

for (i in 2:m) {
y <= x[i-1] + v[i]
if (ul[i] <= prob(y, win) / prob(x[i-1], win))
x[i] <- y else
x[i] <- x[i-1]
}

The plot of the chains in Figure 11.7(a) shows that the chain has converged,
approximately, to the target distribution. Now the generated chain provides
an estimate of 3, after discarding a burn-in sample. From the histogram of
the sample in Figure 11.7(b) the plausible values for 8 are close to 0.2.

The original sample table of relative frequencies, and the MCMC estimates
of the multinomial probabilities are given below.

> print (win)

[1] 82 72 45 34 17

> print (round(win/days, 3))

[1] 0.328 0.288 0.180 0.136 0.068
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> print(round(c(1, 1-b, 1-2%b, 2%b, b)/3, 3))
[1] 0.333 0.267 0.200 0.133 0.067

> xb <- x[(burn+1) :m]

> print(mean(xb))

[1] 0.2101277

The sample mean of the generated chain is 0.2101277 (the simulated year of
‘winners’ table was generated with § = 0.2). S
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FIGURE 11.7: Random walk Metropolis chain for § in Example 11.8.

11.2.4 The Independence Sampler

Another special case of the Metropolis-Hastings sampler is the indepen-
dence sampler [287]. The proposal distribution in the independence sam-
pling algorithm does not depend on the previous value of the chain. Thus,
g(Y|X;) = g(Y) and the acceptance probability (11.3) is

— min F(Y)g(Xy)
oY) = (1’ f(Xt)g(Y))'

The independence sampler is easy to implement and tends to work well when
the proposal density is a close match to the target density, but otherwise does
not perform well. Roberts [241] discusses convergence of the independence
sampler, and comments that “it is rare for the independence sampler to be
useful as a stand-alone algorithm.” Nevertheless, we illustrate the procedure
in the following example, because the independence sampler can be useful in
hybrid MCMC methods (see, e.g., [126]).
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Example 11.9 (Independence sampler). Assume that a random sample
(#1,...,2n) from a two-component normal mixture is observed. The mixture
is denoted by

pN(:uh 0’%) + (1 _p)N(M27U§)7

and the density of the mixture (see Chapter 3) is

() =pfi(2) + (1 = p) f2(2),

where f; and fy are the densities of the two normal distributions, respectively.
If the densities fi; and f are completely specified, the problem is to estimate
the mixing parameter p given the observed sample. Generate a chain using an
independence sampler that has the posterior distribution of p as the target
distribution.

The proposal distribution should be supported on the set of valid proba-
bilities p; that is, the interval (0, 1). The most obvious choices are the beta dis-
tributions. With no prior information on p, one might consider the Beta(1,1)
proposal distribution (Beta(1,1) is Uniform(0,1)). The candidate point Y is
accepted with probability

a(X;,Y) = min <1’ f(Y)g(Xt)) |

f(Xe)g(Y)

where g(-) is the Beta proposal density. Thus, if the proposal distribution is
Beta(a,b), then g(y) o< y* (1 — y)*~! and Y is accepted with probability
min(L, f(t)g(xe)/ f(x:)g(y)), where

F@)glz) 28 (=2 T whi(z) + (1= ) fa(2))]

Fladgly) — yo=t(1 =) T e fi(z) + (1= 20) fa ()]

In the following simulation the proposal distribution is Uniform(0,1). The
simulated data is generated from the normal mixture

0.2N(0,1) + 0.8N (5, 1).

The first steps are to initialize constants and generate the observed sam-
ple. To generate the chain, all random numbers can be generated in advance
because the candidate Y does not depend on X;.

m <- 5000 #length of chain
xt <- numeric(m)

a<-1 #parameter of Beta(a,b) proposal dist.
b <-1 #parameter of Beta(a,b) proposal dist.
p <- .2 #mixing parameter

n <- 30 #sample size

mu <- c(0, 5) #parameters of the normal densities

sigma <- c(1, 1)
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generate the observed sample
<- sample(1:2, size=n, replace=TRUE, prob=c(p, 1-p))
x <- rnorm(n, muli], sigmalil)

[~

# generate the independence sampler chain

u <- runif(m)

y <- rbeta(m, a, b) #proposal distribution
xt[1] <- .5

for (i in 2:m) {
fy <- y[i] * dnorm(x, mu[1], sigma[1]) +
(1-y[i]) * dnorm(x, mu[2], sigmal[2])
fx <- xt[i-1] * dnorm(x, mu[1], sigmal1]) +
(1-xt[i-1]) * dnorm(x, mu[2], sigmal[2])

r <- prod(fy / fx) *
(xt[i-11"(a-1) * (1-xt[i-1]1)"(b-1)) /
(ylil~(a-1) * (1-y[i1)~(b-1))

if (uli] <= r) xt[i] <- y[i] else
xt[i] <- xt[i-1]
}

plot(xt, type="1", ylab="p")
hist(xt[101:m], main="", xlab="p", prob=TRUE)
print (mean(xt[101:m]))

The histogram of the generated sample after discarding the first 100 points
is shown in Figure 11.8. The mean of the remaining sample is 0.2516. The time
plot of the generated chain is shown in Figure 11.9(a), which mixes well and
converges quickly to a stationary distribution.

For comparison, we repeated the simulation with a Beta(5,2) proposal
distribution. In this simulation the sample mean of the chain after discarding
the burn-in sample is 0.2593, but the chain that is generated, shown in Figure
11.9(b), is not very efficient. ©

11.3 The Gibbs Sampler

The Gibbs sampler was named by Geman and Geman [116] because of its
application to analysis of Gibbs lattice distributions. However, it is a general
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FIGURE 11.8: Distribution of the independence sampler chain for p with
proposal distribution Beta(1, 1) in Example 11.9, after discarding a burn-in
sample of length 100.
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FIGURE 11.9: Chain generated by independence sampler for p with proposal
distribution Beta(1, 1) (a) and Beta(5, 2) (b) in Example 11.9.
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method that can be applied to a much wider class of distributions [109, 110,
116]. It is another special case of the Metropolis-Hastings sampler. See the
introduction to Gibbs sampling by Casella and George [41].

The Gibbs sampler is often applied when the target is a multivariate dis-
tribution. Suppose that all the univariate conditional densities are fully spec-
ified and it is reasonably easy to sample from them. The chain is generated
by sampling from the marginal distributions of the target distribution, and
every candidate point is therefore accepted.

Let X = (X1,...,X4) be a random vector in R?. Define the d — 1 dimen-
sional random vectors

X(—j) = (X1,... ,Xj—1, X4, , Xd),

and denote the corresponding univariate conditional density of X; given X _;
by f(X;|X(—;)). The Gibbs sampler generates the chain by sampling from each
of the d conditional densities f(X;|X ;).

In the following algorithm for the Gibbs sampler, we denote X; by X (t).

1. Initialize X (0) at time ¢ = 0.
2. For each iteration, indexed t = 1,2,... repeat:

(a) Set 1 = X;(t—1).
(b) For each coordinate j =1,...,d
i. Generate X7 (t) from f(X;|zj)).
ii. Update z; = X7 (t).
(c) Set X(t) = (X{(t),...,X}(t)) (every candidate is accepted).

(d) Increment ¢.

Example 11.10 (Gibbs sampler: Bivariate distribution). Generate a bivari-
ate normal distribution with mean vector (u1, i), variances 7,03, and cor-
relation p, using Gibbs sampling.

In the bivariate case, X = (X1, Xs), X(_1) = X2, X2y = X;. The
conditional densities of a bivariate normal distribution are univariate normal
with parameters

E[Xs|1] = po + P%(iﬂl — p1),
Var(Xp|z1) = (1 - p®)o3,
and the chain is generated by sampling from
f@rls) ~ Normal(ur + 27 w2 — pa), (1= p)or),
2

O
flaaker) ~ Normal(a + “2 (a1 — ), (1= p*)o3).

For a bivariate distribution (X7, X3), at each iteration the Gibbs sampler



Markov Chain Monte Carlo Methods 321

Sets (z1,22) = X (t — 1);
Generates X (t) from f(X1|z2);
Updates z1 = X (t);

Generates X5 (t) from f(Xa|z1);
Sets X (t) = (X5 (t), X5(t))-

A

#initialize constants and parameters

N <- 5000 #length of chain

burn <- 1000 #burn-in length

X <- matrix(0, N, 2) #the chain, a bivariate sample
rho <- -.75 #correlation

mul <- 0

mu2 <- 2

sigmal <- 1

sigma2 <- .5

sl <- sqrt(l-rho~2)*sigmal
s2 <- sqrt(l-rho~2)*sigma?2

###### generate the chain #####
X[1, 1 <- c(mul, mu2) #initialize

for (i in 2:N) {
x2 <- X[i-1, 2]
ml <- mul + rho * (x2 - mu2) * sigmal/sigma?2
X[i, 1] <- rnorm(1, ml, s1)
x1 <- X[i, 1]
m2 <- mu2 + rho * (x1 - mul) * sigma2/sigmal
X[i, 2] <- rnorm(1, m2, s2)

b <- burn + 1
x <- X[b:N, ]

The first 1000 observations are discarded from the chain in matrix X and
the remaining observations are in x. Summary statistics for the column means,
the sample covariance, and correlation matrices are shown below.

# compare sample statistics to parameters
> colMeans (x)

[1] -0.03030001 2.01176134

> cov(x)

[,1] [,2]
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[1,] 1.0022207 -0.3757518
[2,] -0.3757518 0.2482327
> cor(x)

[,1] [,2]
[1,] 1.0000000 -0.7533379
[2,] -0.7533379 1.0000000

plot(x, main="", cex=.5, xlab=bquote(X[1]),
ylab=bquote(X[2]), ylim=range(x[,2]))

The sample means, variances, and correlation are close to the true pa-
rameters, and the plot in Figure 11.10 exhibits the elliptical symmetry of the
bivariate normal, with negative correlation. (The version printed is a ran-
domly selected subset of 1000 generated variates after discarding the burn-in
sample.) o

Xz
2.0 25 3.0 35
I I
s

1.5

1.0

-3 -2 -1 0 1 2 3

FIGURE 11.10: Bivariate normal chain generated by the Gibbs sampler in
Example 11.10.

11.4 Monitoring Convergence
11.4.1 Why Monitor Convergence

In several examples using various Metropolis-Hastings algorithms, we have
seen that some generated chains have not converged to the target distribu-
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tion. In general, for an arbitrary Metropolis-Hastings sampler the number of
iterations that are sufficient for approximate convergence to the target dis-
tribution or what length burn-in sample is required are unknown. Moreover,
Gelman and Rubin [115] provide examples of slow convergence that cannot
be detected by examining a single chain. A single chain may appear to have
converged because the generated values have a small variance within a local
part of the support set of the target distribution, but in reality the chain has
not explored all of the support set. By examining several parallel chains, slow
convergence should be more evident, particularly if the initial values of the
chain are overdispersed with respect to the target distribution.

11.4.2 Methods for Monitoring Convergence

Methods have been proposed in the literature for monitoring the conver-
gence of MCMC chains (see, e.g., [35, 60, 122, 145, 239, 231]). In the following
section, we discuss and illustrate the approach suggested by Gelman and Ru-
bin [111, 114] for monitoring convergence of Metropolis-Hastings chains. The
coda package [222] provides utilities to implement this and related methods.

In addition to the Gelman-Rubin Method of monitoring convergence, we
have already discussed the importance of monitoring the rejection rate of a
MCMC sampler. One can also inspect trace plots of parallel chains, as in
Figure 11.6, for selecting better tuning parameters. Another quick assessment
is to view the auto-correlation plot of the chain (plot(acf())). See Figures
11.4(a)-11.4(b), for example. If a chain is mixing well, the ACF should drop
off quickly to non-significant spikes.

11.4.3 The Gelman-Rubin Method

The Gelman-Rubin [111, 114] method of monitoring convergence of a M-H
chain is based on comparing the behavior of several generated chains with
respect to the variance of one or more scalar summary statistics. The esti-
mates of the variance of the statistic are analogous to estimates based on
between-sample and within-sample mean squared errors in a one-way analysis
of variance (ANOVA).

Let 1 be a scalar summary statistic that estimates some parameter of the
target distribution. Generate k chains {X;; : 1 <i <k, 1 <j <n} of length
n. (Here the chains are indexed with initial time ¢ = 1.) Compute {9, =
(X1, ..., Xin)} for each chain at time n. We expect that if the chains are
converging to the target distribution as n — oo, then the sampling distribution
of the statistics {t;,} should be converging to a common distribution.

The Gelman-Rubin method uses the between-sequence variance of ¢ and
the within-sequence variance of ¢ to estimate an upper bound and a lower
bound for variance of v, converging to variance v from above and below,
respectively, as the chain converges to the target distribution.

Consider the chains up to time n to represent data from a balanced one-
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way ANOVA on k groups with n observations. Compute the estimates of
between-sample and within-sample variance analogous to the sum of squares
for treatments and the sum of squares for error, and the corresponding mean
squared errors as in ANOVA.

The between-sequence variance is

k

n — —
i=1

where

n k n
= (1/n) an, b= (1/(nk) YD i

i=1 j=1

Within the i*" sequence, the sample variance is
1 n
= E Z: 1/12] i. )
and the pooled estimate of within-sample variance is
k

The between-sequence and within-sequence estimates of variance are combined
to estimate an upper bound for Var(1))

k

?vM—‘

Var(y) = (11.5)
If the chains were random samples from the target distribution, (11.5) is an
unbiased estimator of Var(t). In this application, (11.5) is positively biased
for the variance of 1 if the initial values of the chain are over-dispersed, but
converges to Var(y) as n — oo. On the other hand, if the chains have not con-
verged by time n, the chains have not yet mixed well across the entire support
set of the target distribution so the within-sample variance W underestimates
the variance of ¥. As n — oo we have the expected value of (11.5) converging
to Var(y) from above and W converging to Var(y) from below. If X7a\7‘(1p)
is large relative to W, this suggests that the chain has not converged to the
target distribution by time n.
The Gelman-Rubin statistic is the estimated potential scale reduction

= [Var(y)
VR = s (11.6)

which can be interpreted as measuring the factor by which the standard devi-
ation of ¢ could be reduced by extending the chain. The factor \/E decreases
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to 1 as the length of the chain tends to infinity, so \/]T% should be close to 1 if
the chains have approximately converged to the target distribution. Gelman
[111] suggests that R should be less than 1.1 or 1.2.

Example 11.11 (Gelman-Rubin method of monitoring convergence). This
example illustrates the Gelman-Rubin method of monitoring convergence of
a Metropolis chain. The target distribution is Normal(0,1), and the proposal
distribution is Normal(X¢, 0%). The scalar summary statistic ¢;; is the mean of
the i*" chain up to time j. After generating all chains, the diagnostic statistics
are computed in the Gelman.Rubin function below.

Gelman.Rubin <- function(psi) {
# psil[i,j] is the statistic psi(X[i,1:j1)
# for chain in i-th row of X
psi <- as.matrix(psi)
n <- ncol(psi)
k <- nrow(psi)

psi.means <- rowMeans(psi) #row means

B <- n * var(psi.means) #between variance est.
psi.w <- apply(psi, 1, "var") #within variances

W <- mean(psi.w) #within est.

v.hat <- Wx(n-1)/n + (B/n) #upper variance est.
r.hat <- v.hat / W #G-R statistic
return(r.hat)

}

Since several chains are to be generated, the M-H sampler is written as a
function normal.chain.

normal.chain <- function(sigma, N, X1) {
#generates a Metropolis chain for Normal(O,1)
#with Normal(X[t], sigma) proposal distribution
#and starting value X1
x <- rep(0, N)
x[1] <- X1
u <- runif (N)

for (i in 2:N) {
xt <- x[i-1]
y <- rnorm(1l, xt, sigma) #candidate point
rl <- dnorm(y, O, 1) * dnorm(xt, y, sigma)
r2 <- dnorm(xt, 0, 1) * dnorm(y, xt, sigma)
r<-rl/ r2
if (u[i] <= r) x[i] <- y else
x[i] <- xt
}
return(x)

}
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In the following simulation, the proposal distribution has a small variance
0% = 0.04. When the variance is small relative to the target distribution, the
chains are usually converging slowly.

sigma <- .2 #parameter of proposal distribution
k <-4 #number of chains to generate

n <- 15000 #length of chains

b <- 1000 #burn-in length

#choose overdispersed initial values
x0 <- c¢(-10, -5, 5, 10)

#generate the chains
X <- matrix(0, nrow=k, ncol=n)
for (i in 1:k)
X[i, ] <- normal.chain(sigma, n, x0[i])

#compute diagnostic statistics
psi <- t(apply(X, 1, cumsum))
for (i in 1:nrow(psi))
psili,] <- psili,] / (1:ncol(psi))
print (Gelman.Rubin(psi))

#plot psi for the four chains
par (mfrow=c(2,2))
for (i in 1:k)
plot(psi[i, (b+1):n], type="1",
xlab=i, ylab=bquote(psi))
par (mfrow=c(1,1)) #restore default

#plot the sequence of R-hat statistics
rhat <- rep(0, n)
for (j in (b+1):n)
rhat[j] <- Gelman.Rubin(psil[,1:j])
plot(rhat [(b+1):n], type="1", xlab="", ylab="R")
abline(h=1.1, 1ty=2)

The plots of the four sequences of the summary statistic (the mean) ¥
are shown in Figure 11.11 from time 1001 to 15000. Rather than interpret the
plots, one can refer directly to the value of the factor R to monitor convergence.
The value R = 1.447811 at time n = 5000 suggests that the chain should be
extended. The plot of R (Figure 11.12(a)) over time 1001 to 15000 suggests
that the chain has approximately converged to the target distribution within
approximately 10000 iterations (]% = 1.1166). The dashed line on the plot is
at R = 1.1. Some intermediate values are 1.2252, 1.1836, 1.1561, and 1.1337
at times 6000, 7000, 8000, and 9000, respectively. The value of R is less than
1.1 within time 11200.

For comparison the simulation is repeated, where the variance of the pro-
posal distribution is 2 = 4. The plot of R is shown in Figure 11.12(b) for time
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FIGURE 11.11: Sequences of the running means 1 for four Metropolis-
Hastings chains in Example 11.11.

1001 to 15000. From this plot it is evident that the chain is converging faster
than when the proposal distribution had a very small variance. The value of
R is below 1.2 within 2000 iterations and below 1.1 within 4000 iterations. ¢

11.5 Application: Change Point Analysis

A Poisson process is often chosen to model the frequency of rare events.
Poisson processes are discussed in Section 4.1. A homogeneous Poisson process
{X(t),t > 0} with constant rate X is a counting process with independent and
stationary increments, such that X (0) = 0 and the number of events X (¢) in
[0,t] has the Poisson(At) distribution.

Suppose that the parameter A, which is the expected number of events
that occur in a unit of time, has changed at some point in time k. That is,
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FIGURE 11.12: Sequence of the Gelman-Rubin R for four Metropolis-
Hastings chains in Example 11.11 (a) ¢ = 0.2, (b) 0 = 2.

X; ~ Poisson(ut) for 0 < t < k and X, ~ Poisson(At) for k < ¢. Given a
sample of n observations from this process, the problem is to estimate pu, A
and k.

For a specific application, consider the following well-known example. The
coal data in the boot package [36] gives the dates of 191 explosions in coal
mines which resulted in 10 or more fatalities from March 15, 1851 until March
22, 1962. The data are given in [134], originally from [159]. This problem has
been discussed by many authors, including, e.g., [37, 38, 68, 129, 179, 197].
A Bayesian model and Gibbs sampling can be applied to estimate the change
point in the annual number of coal mining disasters.

Example 11.12 (Coal mining disasters). In the coal data, the date of the
disaster is given. The integer part of the date gives the year. For simplicity,
truncate the fractional part of the year. As a first step, tabulate the number
of disasters per year and create a time plot.

library(boot) #for coal data
data(coal)

year <- floor(coal)

y <- table(year)

plot(y) #a time plot

From the plot in Figure 11.13, it appears that a change in the average
number of disasters per year may have occurred somewhere around the turn
of the century. Note that vector of frequencies returned by table omits the
years where there are zero counts, so for the change point analysis tabulate
is applied.

y <= floor(coal[[1]])
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FIGURE 11.13: Number of annual coal mining disasters in Example 11.12.

y <- tabulate(y)

y <- y[1851:length(y)]

The tabulated sequence of annual number of coal mining disasters is
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Let Y; be the number of disasters in year i, where 1851 is year 1. Assume
that the change point occurs at year k, and the number of disasters in year 4
is a Poisson random variable, where

Y; ~ Poisson(u),
Y; ~ Poisson(\),

There are n = 112 observations ending with year 1962.

i=1,....k,

i=k+1,...,n.

Assume the Bayesian model with independent priors

k ~ Uniform {1,2,...,n},
u ~ Gamma(0.5, b1 ),
A ~ Gamma(0.5, ba),

introducing additional parameters b; and bs, independently distributed as a
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positive multiple of a chi-square random variable. That is,

b1|Y, py A, ba, k ~ Gamma(0.5, p + 1),
ba|Y, p, A, b1, k ~ Gamma(0.5, A + 1).

Let Sy = Zle Y;, and S}, = S,, — Sk. To apply the Gibbs sampler, the fully
specified conditional distributions are needed. The conditional distributions
for u, A\, b1, and by are given by

wl|y, A\, b1, bo, k ~ Gamma(0.5 + Si, k + b1);
0.5+ Sp, n—k + b);
0.5, + 1);

0.5, A+ 1),

)‘|ynu7blab2;k ~ Gamma
bl |ya e, >\; b2; k ~ Gamma

—~~ ~ —~

ba |y, 1, A, b1, k ~ Gamma

and the posterior density of the change point k is

L(Y;k,u, \)

JRIY, s A b1, b2) =
(H 1b2) S LY 5,1, 0)

(11.7)

where s
okOA=1) *
L(Yik, ) = (%)

is the likelihood function.

For the change point analysis with the model specified above, the Gibbs
sampler algorithm is as follows (G(a, b) denotes the Gamma(shape= a, rate=
b) distribution).

1. Initialize k£ by a random draw from 1:n, and initialize A, , b1, b2 to 1.

2. For each iteration, indexed t = 1, 2,... repeat:
(a) Generate pu(t) from G(0.5+ Si—1), (t —1)+bi(t—1)).
(b) Generate A(t) from G(0.5+ Sy, 1), n = k(t — 1) + ba(t — 1)).
(c) Generate by (t) from G(0.5, u(t) + 1).
(d) Generate bo(t) from G(0.5, A(t) + 1).
(e) Generate k() from the multinomial distribution defined by (11.7)

using the updated values of A, u, by, bs.
() X(t) = (u(t),\(t),b1(t),b2(t), k(t)) (every candidate is accepted).

(¢) Increment t.

The implementation of the Gibbs sampler for this problem is shown below.
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# Gibbs sampler for the coal mining change point
# initialization

n <- length(y) #length of the data
m <- 1000 #length of the chain
mu <- lambda <- k <- numeric(m)

L <- numeric(n)

k[1] <- sample(l:n, 1)

mu[1] <- 1

lambda[1] <- 1

bl <- 1

b2 <- 1

# run the Gibbs sampler
for (i in 2:m) {
kt <- k[i-1]

#generate mu
r <- .5 + sum(y[1:kt])
mul[i] <- rgamma(l, shape = r, rate = kt + bl)

#generate lambda
if (kt + 1 > n) r <- .5 + sum(y) else
r <- .5 + sum(y[(kt+1):n])
lambda[i] <- rgamma(l, shape = r, rate = n - kt + b2)

#generate bl and b2
bl <- rgamma(l, shape = .5, rate = mu[i]+1)
b2 <- rgamma(l, shape = .5, rate = lambdal[i]+1)

for (j in 1:n) {
L[j] <- exp((lambda[i] - mu[i]) * j) *
(mu[i] / lambdal[i]) “sum(y[1:j]1)
}
L <- L / sum(L)

#generate k from discrete distribution L on 1:n
k[i] <- sample(l:n, prob=L, size=1)
}

Trace plots of the chains are shown in Figure 11.14. Histograms of u, A,
and the change point k are shown in Figure 11.15. Code to generate the plots
is given at the end of this chapter.

From the output of the Gibbs sampler, the following sample means are
obtained after discarding a burn-in sample of size 200. The estimated change
point is k = 40. From year £k = 1 (1851) to & = 40 (1890) the estimated
Poisson mean is i = 3.1, and from year k = 41 (1891) forward the estimated
Poisson mean is A = 0.93.
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FIGURE 11.14: Output of the Gibbs sampler in Example 11.12.

b <- 201

j <= k[b:m]

> print(mean(k[b:m]))

[1] 39.935

> print (mean(lambda[b:m]))
[1] 0.9341033

> print(mean(mul[b:m]))

[1] 3.108575

<

Several contributed packages for R offer implementations of the methods
in this chapter. See, for example, the packages memc and MCMCpack [123, 196].
The coda (Convergence Diagnosis and Output Analysis) package [222] pro-
vides utilities that summarize, plot, and diagnose convergence of mcmc objects
created by functions in MCMCpack. Also see mcgibbsit [304]. For implementa-
tion of Bayesian methods in general, see the task view on CRAN “Bayesian
Inference” for a description of several packages.
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FIGURE 11.15: Distribution of g, A, and k from the change point analysis
for coal mining disasters in Example 11.12.

Exercises

11.1 Repeat Example 11.1 for the target distribution Rayleigh(o = 2). Com-

11.2

11.3

11.4

11.5

pare the performance of the Metropolis-Hastings sampler for Example
11.1 and this problem. In particular, what differences are obvious from
the plot corresponding to Figure 11.17

Repeat Example 11.1 using the proposal distribution Y ~ Gamma(X4, 1)
(shape parameter X; and rate parameter 1).

Use the Metropolis-Hastings sampler to generate random variables from
a standard Cauchy distribution. Discard the first 1000 of the chain, and
compare the deciles of the generated observations with the deciles of

the standard Cauchy distribution (see qcauchy or qt with df=1). Recall
that a Cauchy(6,n) distribution has density function

1
m(1+[(z —n)/0]*)’

The standard Cauchy has the Cauchy(f = 1,7 = 0) density. (Note that
the standard Cauchy density is equal to the Student t density with one
degree of freedom.)

—o00 <z < oo, 8>0.

f@) =5

Refer to the Bayesian prediction application in Example 11.3, with the

Geometric(p) survival model. Prove that the derived parameter ¢ (p) =
& does not depend on attained age of the individual in this model.
(This is not true in general for other models.)

Refer to the Metropolis-Hastings sampler implemented in Examples
11.3-11.5. Data from a test on a second batch of parts is obtained.
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11.6

11.7

11.8

11.9

11.10

11.11

11.12
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Again, N = 20 parts were tested for 24 hours. Five failures were ob-
served at times 7.0, 7.3, 7.4, 16.8, 21.8, and the other 15 parts were not
observed to fail during the test. Derive the posterior distribution given
the new data, and repeat the entire analysis (using only the gamma
proposal distribution). Find a good value of the shape parameter a and
check for convergence. Compute the posterior mode and intervals.

Implement a random walk Metropolis sampler for generating the stan-
dard Laplace distribution (see Exercise 3.3.2). For the increment, sim-
ulate from a normal distribution. Compare the chains generated when
different variances are used for the proposal distribution. Also, compute
the acceptance rates of each chain.

What effect, if any, does the width w have on the mixing of the chain
in Example 11.87 Repeat the simulation keeping the random number
seed fixed, trying different proposal distributions based on the random
increments from Uniform(—w,w), varying w.

Rao [232, Sec. 5g] presented an example on genetic linkage of 197 ani-
mals in four categories (also discussed in [70, 110, 179, 280]). The group
sizes are (125,18,20,34). Assume that the probabilities of the corre-
sponding multinomial distribution are

1 n 0 1-6 1-6 ¢

2 4 4 7 4 74)
Estimate the posterior distribution of 6 given the observed sample, using
one of the methods in this chapter.

Implement a Gibbs sampler to generate a bivariate normal chain (X¢, Y;)
with zero means, unit standard deviations, and correlation 0.9. Plot
the generated sample after discarding a suitable burn-in sample. Fit a
simple linear regression model Y = By + $1 X to the sample and check
the residuals of the model for normality and constant variance.

This example appears in [41]. Consider the bivariate density

f(x,y) x (’I’L)y;c-l—a—l(l _ y)n—x+b—1) r=0,1,...,n, 0 <y < 1.
€T

It can be shown (see, e.g., [26]) that for fixed a,b,n, the conditional
distributions are Binomial(n,y) and Beta(z + a,n — x + b). Use the
Gibbs sampler to generate a chain with target joint density f(z,y).

Modify the Gelman-Rubin convergence monitoring given in Example
11.11 so that only the final value of R is computed, and repeat the
example, omitting the graphs.

Refer to Example 11.1. Use the Gelman-Rubin method to monitor con-
vergence of the chain, and run the chain until the chain has converged
approximately to the target distribution according to R < 1.2. (See
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Exercise 11.11.) Also use the coda [222] package to check for conver-
gence of the chain by the Gelman-Rubin method. Hints: See the help
topics for the coda functions gelman.diag, gelman.plot, as.mcmc, and
mcme. list.

Refer to Example 11.8. Use the Gelman-Rubin method to monitor con-
vergence of the chain, and run the chain until the chain has converged
approximately to the target distribution according to R < 1.2. Also use
the coda [222] package to check for convergence of the chain by the
Gelman-Rubin method. (See Exercises 11.11 and 11.12.)

Refer to Example 11.9. Use the Gelman-Rubin method to monitor con-
vergence of the chain, and run the chain until the chain has converged
approximately to the target distribution according to R < 1.2. Also use
the coda [222] package to check for convergence of the chain by the
Gelman-Rubin method. (See Exercises 11.11 and 11.12.)

Refer to the change point application in Section 11.5. Compute a 95%
highest posterior density interval (HPDI) for each of the parameters
i, A, and the change point k. Do this using the HPDi function in this
chapter. Compare the results obtained by converting the chains into an
mcme object, and use the coda: :HPDinterval method on that object.

R Code
Code for Figure 11.6

Reference lines are added at the tg.025(v) and tg.975(v) quantiles.

par (mfrow=c(2,2)) #display 4 graphs together
refline <- qt(c(.025, .975), df=n)
rw <- cbind(rwi$x, rw2$x, rw3$x, rwid$x)
for (j in 1:4) {
plot(rw) [,j], type="1",
xlab=bquote(sigma == . (round(sigmalj]l,3))),
ylab="X", ylim=range(rw[,jl))
abline(h=refline)
}
par(mfrow=c(1,1)) #reset to default

Code for Figures 11.7(a) and 11.7(b)

plot(x, type="1")
abline(h=b, v=burn, 1lty=3)
xb <- x[- (1:burn)]
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hist(xb, prob=TRUE, xlab=bquote(beta), ylab="X", main="")
z <- seq(min(xb), max(xb), length=100)
lines(z, dnorm(z, mean(xb), sd(xb)))

Code for Figure 11.14

# plots of the chains for Gibbs sampler output
par(mfcol=c(3,1), ask=TRUE)

plot(mu, type="1", ylab="mu")

plot(lambda, type="1", ylab="lambda")

plot(k, type="1", ylab="change point = k")

Code for Figure 11.15

# histograms from the Gibbs sampler output

par (mfrow=c(2,3))

labelk <- "changepoint"

labell <- paste("mu", round(mean(mu(b:m]), 1))

label2 <- paste("lambda", round(mean(lambdal[b:m]), 1))

hist(mul[b:m], main="", xlab=labell,
breaks = "scott", prob=TRUE) #mu posterior
hist(lambdal[b:m], main="", xlab=label2,

breaks = "scott", prob=TRUE) #lambda posterior
hist(j, breaks=min(j):max(j), prob=TRUE, main="",
xlab = labelk)
par(mfcol=c(1,1), ask=FALSE) #restore display



Chapter 12

Probability Density Estimation

Density estimation is a collection of methods for constructing an estimate of
a probability density, as a function of an observed sample of data. In previous
chapters, we have used density estimation informally to describe the distri-
bution of data. A histogram is a type of density estimator. Another type of
density estimator is provided in the R function density. As explained in the
following sections, density computes kernel density estimates.

Several methods of density estimation are discussed in the literature. In
this chapter we restrict attention to nonparametric density estimation. A den-
sity estimation problem requires a nonparametric approach if we have no in-
formation about the target distribution other than the observed data. In other
cases we may have incomplete information about the distribution, so that tra-
ditional estimation methods are not directly applicable. For example, suppose
it is known that the data arise from a location-scale family, but the family is
not specified. Nonparametric density estimation may not always be the best
approach, however. Perhaps the data are assumed to be a sample from a nor-
mal mixture model, which is a type of classification problem; one can apply
EM or other parametric estimation procedures. For problems that require a
nonparametric approach, density estimation provides a flexible and powerful
tool for visualization, exploration, and analysis of data.

Readers are referred to Scott [264], Silverman [268] or Devroye [73] for an
overview of univariate and multivariate density estimation methods including
kernel methods. On multivariate density estimation see Scott [264].

12.1 Univariate Density Estimation

In this section univariate density estimation methods are presented, includ-
ing the histogram, frequency polygon, average shifted histogram, and kernel
density estimators.

337
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12.1.1 Histograms

Several methods for computing the histogram density estimate are pre-
sented and illustrated with examples. These methods include the normal ref-
erence rule, Sturges [271], Scott [261], and Freedman-Diaconis [102] rules for
determining the class boundaries.

Introduced in elementary statistics courses, and available in all popular
statistics packages, the probability histogram is the most widely used density
estimate in descriptive statistics. However, even in the elementary data anal-
ysis projects we are faced with tricky questions such as how to determine the
best number of bins, the boundaries and width of class intervals, or how to
handle unequal class interval widths. In many software packages, these de-
cisions are made automatically, but sometimes produce undesirable results.
With R software, the user has control over several options described below.

The histogram is a piecewise constant approximation of the density func-
tion. Because data, in general, is contaminated by noise, the estimator that
presents too much detail (fitting more closely with the data) is not necessarily
“better.” The choice of bin width for a histogram is a choice of smoothing
parameter. A narrow bin width may wundersmooth the data, presenting too
much detail, while wider bin width may oversmooth the data, obscuring im-
portant features. Several rules are commonly applied that suggest an optimal
choice of bin width. These rules are discussed below. The choice of smoothing
parameter and bin center is a challenging problem that continues to attract
much attention in research.

Suppose that a random sample Xi,..., X, is observed. To construct a
frequency or probability histogram of the sample, the data must be sorted
into bins, and the binning operation is determined by the boundaries of the
class intervals. Although in principle any class boundaries can be used, some
choices are more reasonable than others in terms of the quality of information
about the population density.

In this book we only discuss uniform bin width. Among the commonly
applied rules for determining the boundaries of class intervals of a histogram
are Sturges’ rule [271], Scott’s normal reference rule [261], the Freedman-
Diaconis (FD) rule [102], and various modifications of these rules.

Given class intervals of equal width h, the histogram density estimate
based on a sample size n is

fla) =2 th <@ <ttt (12.1)

~ nh’
where vy, is the number of sample points in the class interval [tg,tg41). If the
bin width is exactly 1, then the density estimate is the relative frequency of
the class containing the point z.

The bias of a histogram density estimator (12.1) is proportional to the bin
width h. The bias in a histogram density estimate is determined by f’, the
first order derivative of the density. For other density estimators such as the
frequency polygon, ASH, and kernel density estimators, the bias is determined
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by f”, the second order derivative of the density. Estimators of higher order
are not usually applied because the density estimates can be negative.

Sturges’ Rule

Although Sturges’ rule [271] tends to oversmooth the data and either
Scott’s rule or FD are generally preferable, Sturges’ rule is the default in
many statistical packages. In this section we present the motivation for this
rule and also use it to illustrate the behavior of the hist histogram plotting
function and how to change the default behavior. Sturges’ rule is based on the
implicit assumption that the sampled population is normally distributed. In
this case, it is natural to choose a family of discrete distributions that con-
verge in distribution to normal as the number of classes (and sample size n)
tend to infinity. The most obvious candidate is the binomial distribution with
probability of success 1/2. For example, if the sample size is n = 64, one could
select seven class intervals such that the frequency histogram corresponding
to a Binomial(6, 1/2) sample has expected class frequencies

6\ (6) (6 6
=1,6,15,20,15,6,1
(0>7(1)?<2)7 (6) 767 57 0) 5)677

which sum to n = 64. Now consider sample sizes n = 2¥, k = 1,2, .... For large
k (large n) the distribution of Binomial(n, 1/2) is approximately Normal(y =
n/2,0% = n/4). Here k = log, n and we have k + 1 bins with expected class

frequencies
log2<7>, j=0,1,... k.
J

According to Sturges, the optimal [271] width of class intervals is given by

R
1+ logyn’

where R is the sample range. The number of bins depends only on the sample
size n, and not on the distribution. This choice of class interval is designed
for data sampled from symmetric, unimodal populations, but is not a good
choice for skewed distributions or distributions with more than one mode. For
large samples, Sturges’ rule tends to oversmooth (see Table 12.1).

Example 12.1 (Histogram density estimates using Sturges’ Rule). Although
breaks = "Sturges" is the default in the hist function in R, this default
value is a suggestion only unless a vector of class boundaries is given. For
example, compare the following default behavior of hist for number of classes
with Sturges’ Rule.

n <- 25
x <- rnorm(n)
# calc breaks according to Sturges’ Rule
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nclass <- ceiling(1l + log2(n))

cwidth <- diff(range(x) / nclass)

breaks <- min(x) + cwidth * O:nclass

h.default <- hist(x, freq = FALSE, xlab = "default",
main = "hist: default")

curve(dnorm(x), from=-3, to=3, add=TRUE)

h.sturges <- hist(x, breaks = breaks, freq = FALSE,
main = "hist: Sturges")

curve (dnorm(x), from=-3, to=3, add=TRUE)

The corresponding numerical values of breaks and counts are shown below,
and the histograms produced by each method are displayed in Figure 12.1(a).
The default method is a modification of Sturges’ Rule that selects “nice” break
points. (See the source code using graphics: :hist.default for more details
about how Sturges’ Rule is applied.)

> print (h.default$breaks)

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
> print(h.default$counts)

[11 30462721

> print(round(h.sturges$breaks, 1))

[1] -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8

> print (h.sturges$counts)

[1] 346 462

> print(cwidth)

[1] 0.605878

The bin width according to Sturges’ rule is 0.605878, compared to the bin
width 0.5 applied by hist by default. Note that the function

> body(nclass.Sturges)
ceiling(log2(length(x)) + 1)

computes the number of classes according to Sturges’ rule.

The density estimate for a point z in interval i is given by the height of
the histogram on the 7*" bin. In this example we have the following estimates
for the density at the point x = 0.1.

> print(h.default$density[5])
[1] 0.16

> print(h.sturges$density[4])
[1] 0.2640796

For the second estimate, the formula (12.1) is applied with v, = 4 and h =
0.605878. (The standard normal density at = 0.1 is 0.397.)

For larger samples of normal data, the default behavior of hist produces
approximately the same density estimate as Sturges’ Rule, as shown in Figure
12.1(b) for sample size n = 1000. o
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FIGURE 12.1: Histogram estimates of normal density in Example 12.1 for
samples of size (a) 25 and (b) 1000 with standard normal density curve.

Example 12.2 (Density estimates from a histogram). In general, to recover
density estimates f (z) from a histogram, it is necessary to locate the bin
containing the point x, then compute the relative frequency (12.1) for that
bin. In the previous example with n = 1000, corresponding to Figure 12.1(b),
we have the following estimates.

x0 <- .1

b <- which.min(h.default$breaks <= x0) - 1
print(c(b, h.default$density[bl))

b <- which.min(h.sturges$breaks <= x0) - 1
print(c(b, h.sturges$density[bl))

[1] 7.00 0.38
[1] 6.0000000 0.3889306

In the default histogram fi, the point zo = 0.1 is in bin 7, and fl(O.l) =0.38.
In f5 with breaks specified, z is in bin 6 and f5(0.1) = 0.3889306. Alternately,
the density estimate is the relative frequency weighted by bin width.

h.default$counts[7] / (n * 0.5)
h.sturges$counts[6] / (n * cwidth)

[1] 0.38
[1] 0.3889306

Both estimates are quite close to the value of the standard normal density
#(0.1) = 0.3969525. o
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Sturges’ Rule is motivated by the normal distribution, which is symmet-
ric. To obtain better density estimates for skewed distributions, Doane [76]
suggested a modification based on the sample skewness coefficient /by (7.2).
The suggested correction is to add

(12.2)

K, = log, <1+ Vo] ),

o(vbr)

classes, where

B 6(n —2)
S ceaoe)

is the standard deviation of the sample skewness coefficient for normal data.

Scott’s Normal Reference Rule

To select an optimal (or good) smoothing parameter for density estimation,
one needs to establish a criterion for comparing smoothing parameters. One
approach aims to minimize the squared error in the estimate. Following Scott’s
approach [264], we briefly summarize some of the main ideas on Lo criteria.
The mean squared error (MSE) of a density estimator f(z) at  is

MSE(f(z)) = E(f(x) — f(«))* = Var(f(2)) + bias®((x)).

The MSE measures pointwise error. Consider the integrated squared error
(ISE), which is the Ly norm

ISE(f(x)) = / (F(x) — f(x))%dr.

It is simpler to consider the statistic, mean integrated squared error (MISE),
given by

MisE = BlsE| = B | [ (@) - f0)de] = [ L) - ) e

(the integrated mean squared error) by Fubini’s Theorem. Under some regu-
larity conditions on f, Scott [261] shows that

MISE—L+—/f dx+0( +h3)

and the optimal choice of bin width is

6n-1 1/3
ht = (ff’ m) (12.3)
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with asymptotic MISE

9 1/3
AMISE* = (m/f/(m)zdx> n=%3. (12.4)

In density estimation f is unknown, so the optimal h cannot be computed
exactly, but the asymptotically optimal A depends on the unknown density
only through its first derivative.

Scott’s Normal Reference Rule [261], which is calibrated to a normal dis-
tribution with variance o2, specifies a bin width

h = 3.496n~1/3,

where & is an estimate of the population standard deviation o. For normal dis-
tributions with variance o2, the optimal bin width is h* = 2(3'/3)7/6gn=1/3,
Substituting the sample estimate of standard deviation gives the normal ref-
erence rule for optimal bin width

h = 3.4908302126n~ /3 = 3.496n~1/3, (12.5)

where 62 is the sample variance S2. There remains the choice of the location
of the interval boundaries (bin origins or midpoints). On this subject see Scott
[261] and the ASH density estimates in section 12.1.3 below.

R Note 12.1

The truehist (MASS) function [293] uses Scott’s Rule by default. In
hist and truehist the number of classes for Scott’s Rule is computed
by the function nclass.scott as

h <- 3.5 * sqrt(stats::var(x)) * length(x)~(-1/3)
if (b > 0)

ceiling(diff (range(x))/h)
else 1L

(If the vector breaks of breakpoints is not specified, the number of
classes is adjusted by the pretty function to obtain ‘nice’ breakpoints.)

Example 12.3 (Density estimation for Old Faithful). This example illus-
trates Scott’s Normal Reference Rule to determine bin width for a histogram
of data on the eruptions of the Old Faithful geyser. One version of the data is
faithful in the base distribution of R. Another version [20], geyser (MASS),
is analyzed by Venables and Ripley [293]. Here the geyser data set is ana-
lyzed. There are 299 observations on 2 variables, duration and waiting time.
A density estimate for the time between eruptions (waiting) using Scott’s
Rule is computed below. For comparison, density estimation is repeated using
breaks = "scott" in the hist function, and truehist (MASS) with breaks
= "Scott".
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Scott’s Rule gives the estimate for bin width h = 3.5(13.89032 -
0.1495465) = 7.27037, and [(108 — 43)/7.27037] = 9 bins.

library (MASS) #for geyser and truehist

waiting <- geyser$waiting

n <- length(waiting)

# rounding the constant in Scott’s rule

# and using sample standard deviation to estimate sigma
h <- 3.5 * sd(waiting) * n~(-1/3)

# number of classes is determined by the range and h
m <- min(waiting)

M <- max(waiting)

nclass <- ceiling((M - m) / h)

breaks <- m + h * O:nclass

h.scott <- hist(waiting, breaks = breaks, freq = FALSE,

main = "")

truehist(waiting, nbins = "Scott", x0 = 0, prob=TRUE,
col = 0)

hist(waiting, breaks = "scott", prob=TRUE, density=5,
add=TRUE)

The histograms from h.scottl and h.scott2 are shown in Figures 12.2(a)
and 12.2(b). The histograms suggest that the data are not normally dis-
tributed and that there are possibly two modes at about 55 and 75. o

Freedman-Diaconis Rule

Scott’s normal reference rule above is a member of a class of rules that
select the optimal bin width according to a formula h=Tn1/3 , where T is
a statistic. These n~1/3 rules are related to the fact that the optimal rate of
decay of bin width with respect to L, norms is n~'/3 (see e.g. [302]). The
Freedman-Diaconis Rule [102] is another member of this class. For the FD
rule, the statistic T is twice the sample interquartile range. That is,

h=2(IQR)n/3,

where IQR denotes the sample interquartile range. Here the estimator & is
proportional to the IQR. The IQR is less sensitive than sample standard
deviation to outliers in the data. The number of classes is the sample range
divided by the bin width.

Table 12.1 summarizes results of a simulation experiment comparing
Sturges’ Rule, Scott’s Normal Reference Rule, and the Freedman-Diaconis
Rule. Each entry in the table represents a single standard normal or standard
exponential sample. These distributions have equal variance, but each rule
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FIGURE 12.2: Histogram estimate of Old Faithful waiting time density
in Example 12.3. (a) Scott’s Rule suggests 9 bins. (b) hist with breaks =
"scott" uses only 7 bins, after function pretty is applied to the breaks.

produces different optimal numbers of bins, particularly when the sample size
is large. It appears that even for normal data, Sturges’ Rule is oversmoothing
the data.

TABLE 12.1: Estimated Best Number of Class Intervals
for Simulated Data According to Three Rules for Histograms

(a) Standard Normal (b) Standard Exponential
n Sturges Scott FD n Sturges Scott FD
10 5 2 3 10 ) 2 2
20 6 3 5 20 6 3 3
30 6 4 4 30 6 4 4
50 7 5 7 50 7 6 9
100 8 7T 9 100 8 6 7
200 9 9 11 200 9 9 14
500 10 14 20 500 10 16 25
1000 11 19 25| 1000 11 23 39
5000 14 40 52| 5000 14 37 58
10000 15 46 60 | 10000 15 54 82

12.1.2 Frequency Polygon Density Estimate

All histogram density estimates are piecewise continuous but not continu-
ous over the entire range of the data. A frequency polygon provides a contin-
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uous density estimate from the same frequency distribution used to produce
the histogram. The frequency polygon is constructed by computing the density
estimate at the midpoint of each class interval, and using linear interpolation
for the estimates between consecutive midpoints.

Scott [263] derives the bin width for constructing the optimal frequency
polygon by asymptotically minimizing the IMSE. The optimal frequency poly-
gon bin width is

49 -1/s
hiP =2 [w/f”(m)Qdaz} n~1/° (12.6)

with
5 [49 15
IMSET = = {15 /f”(a:)de] n~5 4 0(n™Y).

Notice that in general (12.6) cannot be computed without the knowledge of the
underlying distribution. In practice, f” is estimated (e.g. a difference method
is often used). For normal densities, [ f”(x)*dz = 3/(8y/70”) and the optimal
frequency polygon bin width is

hiP = 2.150n"1/°. (12.7)

The normal distribution as a reference distribution will not be optimal
if the distribution is not symmetric. For data that is clearly skewed, a more
appropriate reference distribution can be selected, such as a lognormal distri-
bution. A skewness adjustment (Scott [264]) derived using a lognormal distri-
bution as the reference distribution, is the factor

12154

67‘72/4(602 — ]_)1/2(904 + 2002 + 12)1/5' (128)

The adjustment factor should be multiplied times the bin width to obtain
the appropriate smaller bin width. Similarly, if the distribution has heavier
tails than the normal distribution, a kurtosis adjustment can be derived with
reference to a t distribution.

Example 12.4 (Frequency polygon density estimate). Construct a frequency
polygon density estimate of the geyser (MASS) data. Determine the frequency
polygon bin width by the normal reference rule, ﬁﬁp =2.155n"1/, substitut-
ing the sample standard deviation S for ¢. The calculations are straightfor-
ward using the returned value from hist. The vertices of the polygon are the
sequence of points ($mids, $density) of the returned hist object. Then the
histogram with frequency polygon density estimate is easily constructed by
adding lines to the plot connecting these points. There are a few more steps
involved, to close the polygon at the ends where the density estimate is zero.
To draw the polygon there are several options, such as segments or polygon.
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waiting <- geyser$waiting  #in MASS

n <- length(waiting)

# freq poly bin width using normal ref rule
h <- 2.15 * sqrt(var(waiting)) * n~(-1/5)

# calculate the sequence of breaks and histogram

br <- pretty(waiting, diff(range(waiting)) / h)

brplus <- c(min(br)-h, max(br+h))

histg <- hist(waiting, breaks = br, freq = FALSE,
main = "", xlim = brplus)

vx <- histg$mids #density est at vertices of polygon
vy <- histg$density

delta <- diff(vx)[1] # h after pretty is applied

k <- length(vx)

vx <- vx + delta # the bins on the ends

vx <- c(vx[1] - 2 * delta, vx[1] - delta, vx)

vy <- c(0, vy, 0)

# add the polygon to the histogram

polygon(vx, vy)

The bin width is h = 9.55029. The frequency polygon is shown in Figure 12.3.
If the density estimates are required for arbitrary points, approxfun can be
applied for the linear interpolation. As a check on the estimate, verify that

[ fla)dz = 1.

# check estimates by numerical integration

fpoly <- approxfun(vx, vy)

print (integrate(fpoly, lower=min(vx), upper=max(vx)))
1 with absolute error < 1.1le-14

<

It is easy to display a frequency polygon density estimate with ggplot2.
Try the following code and compare the result with Figure 12.3:

library(ggplot2)
ggplot (geyser, aes(waiting)) + geom_frepoly(binsize=h)

12.1.3 The Averaged Shifted Histogram

In the preceding sections we have considered several rules for determining
the best number of classes or best class interval width. The optimal bin width
does not determine the location of the center or endpoints of the bin, however.
For example, using truehist (MASS), we can easily shift the bins from left to
right using the argument x0, while keeping the bin width constant. Shifting
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FIGURE 12.3: Frequency polygon estimate of Old Faithful waiting time
density in Example 12.4.

the class boundaries changes the density estimates, so several different den-
sity estimates are possible using the same bin width. Figure 12.4 illustrates
four histogram density estimates of a standard normal sample using the same
number of bins, with bin origins offset by 0.25 from each other.

The Average Shifted Histogram (ASH) proposed by Scott [262] averages
the density estimates. That is, the ASH estimate of density is

fasu(e) = — 3" (@)

where the class boundaries for estimate fj+1(f£) are shifted by h/m from the
boundaries for f;(x). Here we are viewing the estimates as m histograms with
class width h. Alternately we can view the ASH estimate as a histogram with
widths h/m. The optimal bin width (see [264, Sec. 5.2]) for the naive ASH
estimate of a Normal(u, 02) density is

h* = 2.5760n"1/°. (12.9)

Example 12.5 (Calculations for ASH estimate). This numerical example
illustrates the method of computing the ASH estimates. Four histogram esti-
mates, each with bin width 1, are computed for a sample size n = 100. The
bin origins for each of the densities are at 0, 0.25, 0.5, and 0.75 respectively.
The bin counts and breaks are shown below.

breaks -4 -3 -2 -1 0 1 2 3 4
counts 0 2 11 27 38 16 6 O

breaks -3.75 -2.75 -1.756 -0.75 0.25 1.256 2.25 3.25 4.25
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counts O 4 17 23 38 16 2 O

breaks -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5
counts 0 7 21 233415 0 O

breaks -3.25 -2.25 -1.25 -0.25 0.75 1.75 2.75 3.75 4.75
counts 2 9 26 30 21 12 0 O

To compute an ASH density estimate at the point x = 0.2, say, locate the
intervals containing x = 0.2 and average these density estimates. The estimate
is

1 38+23+23+30 114

4
1
2= L _1 — 2% 0.285.
Jasn 0. 4223 1" 100(1) 100 ~ 028

Alternately, we can compute this estimate by considering the mesh over the
subintervals with width § = h/m = 0.25. There are now 36 breakpoints at
—440.25¢,2=0,1,...,35, and 35 bin counts, v1,...,v35. The point z = 0.2
is in the intervals (—.75,.25], (—.5,.5], (—.25,.75], and (0, 1] corresponding to
the 14th through 20th subintervals. The bin counts are

[1:12] 0 0 O O O O 2 0 2 3 4 2
[13:24] 8 7 9 3 4 71611 4 3 3 6
[25:35] 4 2 0 0 0O O O O O O O
and the estimate can be computed by rearranging the terms as
7 + 9 + 3 + 4 = 23
9 + 3 + 4 + 7 = 23
3 + 4 + 7 + 16 = 30
4 + 7 + 16 + 11 = 38

=7+ 2(9) + 3(3) +4(4) + 3(7) + 2(16) + 11 114

or
» V14 + 2v15 + 3v16 + 4vi7 + 3vig + 2v19 + g
fasm(0.2) = )
mnh
o
In general, if ¢, = max{t; : t; <z < t;j41}, we have
»  Vktlem T 2Whiom Mg+ o+ 20k m2 + Vepm—1
fasu(z) =
mnh
1 i
— 12.1
- ( m)ukﬂ (12.10)
Jj=1l—-m

This computing formula requires that there are m — 1 empty bins on the left
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FIGURE 12.4: Histogram estimates of a normal sample with equal bin width
but different bin origins, and standard normal density curve.

and the right. Equation (12.10) provides a formula for computing an ASH
density estimate and shows that this estimate is a weighted average of the bin
counts on the finer mesh. The weights (1 — |j|/m) correspond to a discrete
triangular distribution on [—1, 1], which approaches the triangular density on
[—1,1] as m — oo.

The ASH estimates can be generalized by replacing the weights (1—|j|/m)
in (12.10) with a weight function w(j) = w(j, m) corresponding to a symmetric
density supported on [—1,1]. The triangular kernel is used in (12.10), which
is

Kity=1-1, <1,

and K (t) = 0 otherwise. For other kernels see e.g. [264, 268] or the examples
of density, and Section 12.2.

Example 12.6 (ASH density estimate). Construct an ASH density estimate
of the Old Faithful waiting time data in geyser$waiting (MASS) based on
20 histograms. For comparison with the naive histogram density estimate of
this data in Example 12.3, the bin width is set to h = 7.27037. (The normal
reference rule for ASH estimates in (12.9) gives h = 11.44258.)

library(MASS)
waiting <- geyser$waiting
n <- length(waiting)
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m <- 20

a <- min(waiting) - .5
b <- max(waiting) + .5
h <- 7.27037

delta <- h / m

#get the bin counts on the delta-width mesh.

br <- seq(a - delta*m, b + 2*delta*m, delta)
histg <- hist(waiting, breaks = br, plot = FALSE)
nk <- histg$counts

K <- abs((1-m): (m-1))

fhat <- function(x) {
# locate the leftmost interval containing x
i <- max(which(x > br))
k<-(GE-m+1):({d +m-1)
# get the 2m-1 bin counts centered at x

vk <- nk[k]
sum((1 - K / m) * vk) / (m * h)  #f.hat
}

# density can be computed at any points in range of data
z <- as.matrix(seq(a, b + h, .1))
f.ash <- apply(z, 1, fhat) #density estimates at midpts

# plot ASH density estimate over histogram

br2 <- seq(a, b + h, h)

hist(waiting, breaks = br2, freq = FALSE, main = "",
ylim = c¢(0, max(f.ash)))

lines(z, f.ash, xlab = "waiting")

Compare the ASH estimate in Figure 12.5 with the histogram estimate in
Figure 12.2(b) and the frequency polygon density estimate in Figure 12.3. ¢

See the ash package [265] for an implementation of Scott’s univariate and
bivariate ASH routines.

12.2 Kernel Density Estimation

Kernel density estimation generalizes the idea of a histogram density
estimate. If a histogram with bin width h is constructed from a sample
X1,...,X,, then a density estimate for a point x within the range of the
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FIGURE 12.5: ASH density estimate of Old Faithful waiting times in Ex-
ample 12.6.

data is

f(x):ﬁxk,

where & is the number of sample points in the interval (x — h,z + h). This
estimator can be written

fa) = izj;}llw (x_hX) (12.11)

where w(t) = 1I(|t| <1) is a weight function. The density estimator f(z)

in (12.11) with w(t) = £1(|t| < 1) is called the naive density estimator. This
weight function has the property that f_ll w(t)dt = 1, and w(t) > 0, so w(t)
is a probability density supported on the interval [—1,1].

Kernel density estimation replaces the weight function w(t) in the naive

estimator with a function K(-) called a kernel function, such that

/O:O K(t)dt = 1.

In probability density estimation, K (-) is usually a symmetric probability den-

sity function. The weight function w(t) = 1I(|t| < 1) is called the rectangular

kernel. The rectangular kernel is a symmetric probability density centered at
the origin, and

—w

nh h ’

corresponds to a rectangle of area 1/n centered at X;. The density estimate
at z is the sum of rectangles located within h units from z.
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In this book, we restrict attention to symmetric positive kernel density es-
timators. Suppose that K (-) is another symmetric probability density centered
at the origin, and define

fr(w) = %Z%K (xhX> (12.12)

1=1

Then f is a probability density function. For example, K (z) may be the trian-
gular density on [—1, 1] (the triangular kernel) or the standard normal density
(the Gaussian kernel). In section 12.1.3 we have seen that the ASH density es-
timate converges to a triangular kernel density estimate (see equation (12.10)
for the kernel) as n — oo. The triangular kernel estimator corresponds to the
sum of areas of triangles instead of rectangles. The Gaussian kernel estimator
centers a normal density at each data point, as illustrated in Figure 12.6.

From the definition of the kernel density estimator in (12.12) it follows
that certain continuity and differentiability properties of K (x) also hold for
frc (). If K (z) is a probability density, then fi () is continuous at x if K (z) is
continuous at x, and fx (z) has an r*» order derivative at z if K()(z) exists.
In particular, if K(z) is the Gaussian kernel, then f is continuous and has
derivatives of all orders.

The histogram density estimator corresponds to the rectangular kernel
density estimator. The bin width h is a smoothing parameter; small values
of h reveal local features of the density, while large values of h produce a
smoother density estimate. In kernel density estimation h is called the band-
width, smoothing parameter or window width.

The effect of varying the bandwidth is illustrated in Figure 12.6. The
n = 10 sample points in Figure 12.6,

-0.77 -0.60 -0.25 0.14 0.45 0.64 0.65 1.19 1.71 1.74

were generated from the standard normal distribution. As the window width
h decreases, the density estimate becomes rougher, and larger h corresponds to
smoother density estimates. (This example is presented simply to graphically
illustrate the kernel method; density estimation is not very useful for such a
small sample.)

Table 12.2 gives some kernel functions that are commonly applied in den-
sity estimation, which are also shown in Figure 12.7. The Epanechnikov ker-
nel was first suggested for kernel density estimation by Epanechnikov [92].
The efficiency of a kernel is defined by Silverman [268, p. 42]. The rescaled
Epanechnikov kernel has efficiency 1, which is an optimal kernel in the sense
of MISE (Scott [264, pp. 138-140]). The asymptotic relative efficiencies given
in Table 12.2 in fact show that there is not much difference among the kernels
if the mean integrated squared error criterion is used (see [268, p. 43]). See
the examples of density for a method of calculating the efficiencies (actually
the reciprocal of efficiency in Table 12.2).
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FIGURE 12.6: Kernel density estimates using a Gaussian kernel with band-
width h.

For a Gaussian kernel, the bandwidth h that optimizes IMSE is
h=(4/3)"%0n=1° = 1.060n /5. (12.13)

This choice of bandwidth is an optimal (IMSE) choice when the distribution
is normal. If the true density is not unimodal, however, (12.13) will tend to
oversmooth. Alternately, one can use a more robust estimate of dispersion in
(12.13), setting

& = min(S, IQR/1.34),

where S is the standard deviation of the sample. Silverman [268, p. 48] indi-
cates that an even better choice for a Gaussian kernel is the reduced width

h=0.96n""% = 0.9min(S, IQR/1.34)n~'/5, (12.14)

which is a good starting point appropriate for a wide range of distributions
that are not necessarily normal, unimodal, or symmetric.

The R reference manual [226] topic for bandwidth (?bw.nrd) refers to the
rule in (12.14) as Silverman’s “rule-of-thumb,” which is applied unless the
quartiles coincide. Various choices for bandwidth selection are illustrated in
Examples 12.7 and 12.8 below.
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FIGURE 12.7: Kernel functions for density estimation.

TABLE 12.2: Kernel Functions for Density Estimation

Kernel K(t) Support 0% Efficiency
Gaussian \/% exp(—3t?) R 1 1.0513
Epanechnikov 3 (1 — ¢2) <1 1/5 1
Rectangular 1 [tj<1 1/3 1.0758
Triangular 11—t [t|]<1 1/6 1.0143
Biweight 12(1—12)? It <1 1/7 1.0061
Cosine qcos gt R 1—8/7% 1.0005

For equivalent kernel rescaling, the bandwidth h; can be rescaled by setting

OK
ha !

Q

hi.

OK,

Factors for equivalent smoothing are given by Scott [264, p. 142]. A kernel
can also be scaled to “canonical” form such that the bandwidth is equivalent
to the Gaussian kernel.

The density function in R computes kernel density estimates for seven
kernels. The smoothing parameter is bw (bandwidth), but the kernels are
scaled so that bw is the standard deviation of the kernel. The “canonical
bandwidth” can be obtained using density with the option give.Rkern =
TRUE. Choices for the kernel are gaussian, epanechnikov, rectangular,
triangular, biweight, cosine, or optcosine. Run example(density) to
see several plots of the corresponding density estimates. The cosine kernel
given in Table 12.2 corresponds to the optcosine choice. The bandwidth ad-
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justment for equivalent kernels in density is approximately 1, so the kernels
are approximately equivalent.

Example 12.7 (Kernel density estimate of Old Faithful waiting time). In this
example we look at the result obtained by the default arguments to density.
The default method applies the Gaussian kernel. For details on the default
bandwidth selection see the help topics for bandwidth or bw.nrdo.

library (MASS)

waiting <- geyser$waiting

n <- length(waiting)

hl <- 1.06 * sd(waiting) * n~(-1/5)

h2 <- .9 * min(c(IQR(waiting)/1.34, sd(waiting))) * n~(-1/5)
plot(density(waiting))

> print(density(waiting))

Call:
density.default(x = waiting)
Data: waiting (299 obs.); Bandwidth ’bw’ = 3.998
X y

Min. : 31.01 Min. :3.762e-06

1st Qu.: 53.25 1st Qu.:4.399e-04

Median : 75.50 Median :1.121e-02

Mean : 75.50 Mean :1.123e-02

3rd Qu.: 97.75 3rd Qu.:1.816e-02

Max. :119.99  Max. 3.342e-02

sdK <- density(kernel = "gaussian", give.Rkern = TRUE)
> print(c(sdK, sdK * sd(waiting)))

[1] 0.2820948 3.9183881

> print(c(sd(waiting), IQR(waiting)))

[1] 13.89032 24.00000

> print(c(hl, h2))

[1] 4.708515 3.997796

The default density estimate applied the Gaussian kernel with the bandwidth
h = 3.998 corresponding to equation (12.14). The default density plot with
bandwidth 3.998 is shown in Figure 12.8. Other choices of bandwidth are also
shown for comparison. o

Example 12.8 (Kernel density estimate of precipitation data). The dataset
precip in R is the average amount of precipitation for 70 United States cities
and Puerto Rico. We use the density function to construct kernel density
estimates using the default and other choices for bandwidth.

n <- length(precip)
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FIGURE 12.8: Gaussian kernel density estimates of Old Faithful waiting
time in Example 12.7 using density with different bandwidths.

hl <- 1.06 * sd(precip) * n~(-1/5)
h2 <- .9 * min(c(IQR(precip)/1.34, sd(precip))) * n~(-1/5)
hO <- bw.nrdO(precip)

par(mfrow = c(2, 2))

plot(density(precip)) #default Gaussian (hO)
plot(density(precip, bw = hl)) #Gaussian, bandwidth hil
plot(density(precip, bw = h2)) #Gaussian, bandwidth h2
plot(density(precip, kernel = "cosine"))

par(mfrow = c(1,1))

The three values for bandwidth computed are

> print(c(hO, hl, h2))
[1] 3.847892 6.211802 3.847892

and the plots are shown in Figure 12.9. The default density plot applied the
Gaussian kernel with the bandwidth h = 3.848 corresponding to equation
(12.14) and the result of bw.nrdo. o
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FIGURE 12.9: Kernel density estimates of precipitation data in Example
12.8 using density with different bandwidths.

Example 12.9 (Computing f(z) for arbitrary z). To estimate the density
for new points, use approx.

d <- density(precip)
xnew <- seq(0, 70, 10)
approx(d$x, d$y, xout = xnew)

The code above produces the estimates:

$x

[1] 0 10 20 30 40 50 60 70

8y

[1] 0.000952360 0.010971583 0.010036739
[4] 0.021100536 0.035776120 0.014421428
[7] 0.005478733 0.001172337

For certain applications it is helpful to create a function to return the esti-
mates, which can be accomplished easily with approxfun. Below fhat is a
function returned by approxfun.
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> fhat <- approxfun(d$x, d$y)

> fhat (xnew)

[1] 0.000952360 0.010971583 0.010036739
[4] 0.021100536 0.035776120 0.014421428
[7] 0.005478733 0.001172337

Boundary kernels

Near the boundaries of the support set of a density, or discontinuity points,
kernel density estimates have larger errors. Kernel density estimates tend to
smooth the probability mass over the discontinuity points or boundary points.
For example, see the kernel density estimates of the precipitation data shown
in Figure 12.9. Note that the density estimates suggest that negative inches
of precipitation are possible.

In the next example, we illustrate the boundary problem with an expo-
nential density, and compare the kernel estimate with the true density.

Example 12.10 (Exponential density). A Gaussian kernel density estimate
of an Exponential(1) density is shown in Figure 12.10. The true exponential
density is shown with a dashed line.

x <- rexp(1000, 1)
plot(density(x), xlim = c(-1, 6), ylim = c(0, 1), main="")
abline(v = 0)

# add the true density to compare
y <- seq(.001, 6, .01)
lines(y, dexp(y, 1), 1ty = 2)

Note that the smoothness of the kernel estimate does not fit the discontinuity
of the density at x = 0. o

Scott [264] discusses boundary kernels, which are finite support kernels
that are applied to obtain the density estimate in the boundary region. A
simple fix is to use a reflection boundary technique if the discontinuity occurs
at the origin. First add the reflection of the entire sample; that is, append
—Z1,...,—x, to the data. Then estimate a density g using the 2n points,
but use n to determine the smoothness parameter. Then f(z) = 2§(z). This
method is applied below.

Example 12.11 (Reflection boundary technique). The reflection boundary
technique can be applied when the density has a discontinuity at 0, such as
in Example 12.10.

xx <- c(x, -x)
g <- density(xx, bw = bw.nrd0(x))
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FIGURE 12.10: Gaussian kernel density estimate (solid line) of an exponen-
tial density in Example 12.10, with true density (dashed line). In the second
plot, the reflection boundary technique is applied on the same data.

a <- seq(0, 6, .01)

ghat <- approx(g$x, g8y, xout = a)
fhat <- 2 * ghat$y # density estimate along a

bw <- paste("Bandwidth = ", round(g$bw, 5))

plot(a, fhat, type="1", xlim=c(-1, 6), ylim=c(0, 1),
main = "", xlab = bw, ylab = "Density")

abline(v = 0)

# add the true density to compare
y <- seq(.001, 6, .01)
lines(y, dexp(y, 1), 1ty = 2)

The plot of the density estimate with reflection boundary is shown in Figure
12.10. o
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See Scott [264] or Wand and Jones [303] for further discussion of methods
for kernel density estimation near boundaries.

12.3 Bivariate and Multivariate Density Estimation

In this section examples are presented that illustrate some of the basic
methods for bivariate and multivariate density estimation. Scott [264] is a
comprehensive reference on multivariate density estimation. Also see Silver-
man [268, Ch. 4].

12.3.1 Bivariate Frequency Polygon

To construct a bivariate density histogram (polygon), it is necessary to
define two-dimensional bins and count the number of observations in each bin.
The bin2d function in the following example computes the two dimensional
frequency table.

Example 12.12 (Bivariate frequency table: bin2d). The function bin2d bins
a bivariate data matrix, based on the univariate histogram hist in R. See
the documentation for hist for an explanation of how the breakpoints are
determined.

The frequencies are computed by constructing a two dimensional contin-
gency table with the marginal breakpoints as the cut points. The return value
of bin2d is a list including the table of bin frequencies, vectors of breakpoints,
and vectors of midpoints.

bin2d <-
function(x, breaksl = "Sturges", breaks2 = "Sturges"){
# Data matrix x is n by 2
# breaksl, breaks2: any valid breaks for hist function
# using same defaults as hist
histgl <- hist(x[,1], breaks = breaksl, plot
histg2 <- hist(x[,2], breaks = breaks2, plot
brx <- histgl$breaks
bry <- histg2$breaks

FALSE)
FALSE)

# bin frequencies
freq <- table(cut(x[,1], brx), cut(x[,2], bry))

return(list(call = match.call(), freq = freq,
breaksl = brx, breaks2 = bry,
midsl = histgl$mids, mids2 = histg2$mids))
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To show the details of the bin2d function, it is applied to bin the bivariate
sepal length and sepal width distribution of iris setosa data. Then in Ex-
ample 12.13 bin2d is used to bin data for constructing a bivariate frequency

polygon.

> bin2d(iris[1:50,1:2])
$call bin2d(x = iris[1:50, 1:2])

$freq

(2,2.5] (2.5,3] (38,3.5] (3.5,4] (4,4.5]
(4.2,4.4] 0 3 1 0 0
(4.4,4.6] 1 0 3 1 0
(4.6,4.8] 0 2 5 0 0
(4.8,5] 0 2 8 2 0
(5,5.2] 0 0 6 4 1
(5.2,5.4] 0 0 2 4 0
(5.4,5.6] 0 0 1 0 1
(5.6,5.8] 0 0 0 2 1
$breaksi
[1] 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
$breaks?2
[1] 2.0 2.5 3.0 3.5 4.0 4.5
$midsi
[1] 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7
$mids2

[1] 2.25 2.75 3.25 3.75 4.25

&

Example 12.13 (Bivariate density polygon). Bivariate data is displayed in
a 3D density polygon, using the bin2d function in Example 12.12 to compute
the bivariate frequency table. After binning the bivariate data, the persp
function plots the density polygon.

#generate standard bivariate normal random sample
n <- 2000; d <-2
x <- matrix(rnorm(n*d), n, d)

# compute the frequency table and density estimates
b <- bin2d(x)

h1l <- diff(b$breaksi)

h2 <- diff (b$breaks2)

# matrix h contains the areas of the bins in b
h <- outer(hl, h2, "x")

Z <- b$freq / (n * h) # the density estimate
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persp(x=b$midsl, y=b$mids2, z=Z, shade=TRUE,
xlab="X", ylab="Y", main="",
theta=45, phi=30, ltheta=60)

The perspective plot, a three dimensional density polygon, is shown in Figure
12.11. Also see Figure 5.9 for another view of bivariate normal data, in a “flat”
hexagonal histogram. o

FIGURE 12.11: Density polygon of bivariate normal data in Example 12.13,
using normal reference rule (Sturges’ Rule) to determine bin widths.

See the persp examples for more options, including color. Also see the
wireframe function in the lattice [257] package. Other functions that bin
bivariate data are e.g. bin2 (ash) [265] and hist2d (gplots) [305].

3D Histogram

A 3D histogram can be displayed by functions in the rgl [2] package, an
interactive 3D graphics package. To see a demo, type

library(rgl)
demo (hist3d)

After running the demo, the source code for two functions named hist3d
and binplot.3d that are used in the demo should have appeared in the
console window (scroll up to see it). To apply the rgl demo histogram to
this example, copy the two functions hist3d and binplot.3d into a source
file. These functions are in the file hist3d.r located in the demo directory of
library/rgl.
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library(rgl)

#run demo(hist3d) or

#source binplot.3d and hist3d functions
n <- 1000

d <- 2

x <- matrix(rnorm(n*d), n, d)
rgl.clear()

hist3d(x[,1], x[,2])

As Silverman [268, p. 78] points out, there are serious presentational dif-
ficulties with a 3D histogram. The surface and wireframe plots of bivariate
densities are better, particularly when they are generated from a continuous
density estimator.

12.3.2 Bivariate ASH

The average shifted histogram estimator of density can be extended to
multivariate density estimation. Suppose that bivariate data {(x,y)}, have
been sorted into an nbin, by nbine array of bins with frequencies v = (v;;)
and bin widths h = (hq, ha) (see e.g. the bin2d function in Example 12.12).
The parameter m = (mq,mg) is the number of shifted histograms on each
axis used in the estimate. The histograms are shifted in two directions, so
that there are mims histogram density estimates to be averaged.

The bivariate ASH estimate of the joint density f(x,y) is

my1 ma

fasu(z,y) = m11m2 YD fily).
i=1 j=1

The bin weights are given by

Wi = (1— |Z|> (1—|j|>, 1= 1—m1,...,m1—1,j: l—mg,...,mg—l.

my ma

(12.15)
One can apply a similar algorithm for computing the individual estimates
fij(x,y) as in the univariate ASH. See Scott [264, Sec. 5.2] for a bivariate ASH
algorithm. The ASH estimates can be generalized by replacing the weights
(1 —|é|/mq) and (1 — |j|/m2) in (12.15) with other kernels. The triangular
kernel is applied in (12.15). Also note that the bivariate ASH methods can be
generalized to dimension d > 2.

Example 12.14 (Bivariate ASH density estimate). This example computes
a bivariate ASH estimate of a bivariate normal sample, using Scott’s routines
in the ash package [265]. The function ash2 returns a list containing (among
other things) the coordinates of the bin centers and the density estimates,
labeled x, y, z. The multivariate normal data is generated by the mvrnorm
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(MASS) function. Alternately, samples can be generated using one of the gen-
erator functions rmvn.eigen, rmvn.svd, or rmvn.Choleski given in Examples

3.16-3.18.

library(ash) # for bivariate ASH density est.
# generate N_2(0,Sigma) data

n <- 2000

d <- 2

nbin <- ¢(30, 30) # number of bins

m <- c(5, 5) # smoothing parameters

# First example with positive correlation

Sigma <- matrix(c(1, .9, .9, 1), 2, 2)

set.seed(345)

x <= MASS::mvrnorm(n, c(0, 0), Sigma)

# x <- rmvn.eigen(n, c(0, 0), Sigma) #alternate generator

b <- bin2(x, nbin = nbin)
# kopt is the kernel type, here triangular
est <- ash2(b, m = m, kopt = c(1,0))

persp(x = est$x, y = est$y, z = est$z, shade=TRUE,
xlab = "X", ylab = "Y", zlab = "", main="",
theta = 30, phi = 75, ltheta = 30, box = FALSE)

contour(x = est$x, y = est$y, z = est$z, main="")

The perspective and contour plots from the ASH estimates are shown in Fig-
ures 12.12(a) and 12.12(c). The variables in the first example have positive
correlation p = 0.9. In the second example, the variables have negative corre-
lation p = —0.9.

# Second example with negative correlation

Sigma <- matrix(c(1, -.9, -.9, 1), 2, 2)

set.seed(345)

x <- MASS::mvrnorm(n, c(0, 0), Sigma)

# x <- rmvn.eigen(n, c(0, 0), Sigma) #alternate generator
b <- bin2(x, nbin = nbin)

est <- ash2(b, m = m, kopt = c(1,0))

persp(x = est$x, y = est$y, z = est$z, shade=TRUE,
xlab = "X", ylab = "Y", zlab = "", main="",
theta = 30, phi = 75, ltheta = 30, box = FALSE)
contour(x = est$x, y = est$y, z = est$z, main="")
par(ask = FALSE)
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The perspective plots and contour plots from the ASH estimates of the den-
sities in the second case are shown in Figures 12.12(b) and 12.12(d). o

FIGURE 12.12: Bivariate ASH density estimates of bivariate normal data
in Example 12.14.

12.3.3 Multidimensional Kernel Methods

Suppose X = (X1,...,Xq) is a random vector in R%, and K(X) : R - R
is a kernel function, such that K (X) is a density function on R%. Let the n x d
matrix (z;;) be an observed sample from the distribution of X. The smooth-
ing parameter is a d-dimensional vector h. If the bandwidth is equal in all
dimensions, the multivariate kernel density estimator of f(X) with smoothing
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parameter hp is

Fre(X) = LZK (X;1m> , (12.16)

where z;. is the i'" row of (z;;). Usually K(X) will be a symmetric and
unimodal density on R?, such as a standard multivariate normal density.
The Gaussian kernels have unbounded support. An example of a kernel with
bounded support is the multivariate version of the Epanechnikov kernel, de-
fined 1

K(X)= 50

(d+2)(1-XTX)[(XTX < 1),

where ¢y = 27%2/(dT’(d/2)) is the volume of the d-dimensional unit sphere.
When d = 1 the constant is ¢; = 2 and K (z) = (3/4)(1—2?) I(|z| < 1), which
is the univariate Epanechnikov kernel given in Table 12.2.

In the bivariate case, choosing equal bandwidths h; = hs and the stan-
dard Gaussian kernel corresponds to centering identical weight functions like
smooth bumps at each sample point and summing the heights of these surfaces
to obtain the density estimate at a given point. For the bivariate Gaussian
kernel, in a graphical representation corresponding to Figure 12.6 the small
bumps will be surfaces (bivariate normal densities) rather than curves.

The product kernel density estimate of f(X) with smoothing parameter
h=(h1,...,hq) is

f(X)liﬁK(Xi_x”> (12.17)
nhy g 1 ; . .

For this estimator and the multivariate frequency polygon, the optimal
smoothing parameter has

B =O0(m V&) AMISE* = O(n~ /44,

and for uncorrelated multivariate normal data the optimal bandwidths are

4 1/(d+4) e
The constant (4/(d + 2))'/(4*+%) is close to 1 and converges to 1 as d — oo,

thus Scott’s multivariate normal reference rule [264] for d-dimensional data is

]A'Lj = 6jn_1/(d+4).

Example 12.15 (Product kernel estimate of a bivariate normal mixture).
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This example plots the density estimate for a bivariate normal location mix-
ture using kde2d (MASS). The mixture has three components with different
mean vectors and identical variance ¥ = Is. The mean vectors are

R

and the mixing probabilities are p = (0.2,0.3,0.5). The code to generate the
mixture data and plots in Figure 12.13 follows.

library (MASS) #for mvrnorm, kde2d, ucv functions
#generate the normal mixture data

n <- 2000

p <- c(.2, .3, .5)

mu <- matrix(c(0, 1, 4, 0, 3, -1), 3, 2)

Sigma <- diag(2)

i <- sample(1:3, replace = TRUE, prob = p, size = n)
k <- table(i)

x1 <- mvrnorm(k[1], mu = mul1,], Sigma)

x2 <- mvrnorm(k[2], mu[2,], Sigma)

x3 <- mvrnorm(k[3], mu = mu[3,], Sigma)

X <- rbind(x1l, x2, x3) #the mixture data

x <- X[,1]

y <- X[,2]

> print(c(bandwidth.nrd(x), bandwidth.nrd(y)))
[1] 1.876510 1.840368

8
c
Il

# accepting the default normal reference bandwidth
fhat <- kde2d(x, y)

contour (fhat)

persp(fhat, phi = 30, theta = 20, d = 5, xlab = "x")

# select bandwidth by unbiased cross-validation

h = c(ucv(x), ucv(y))

fhat <- kde2d(x, y, h = h)

contour (fhat)

persp(fhat, phi = 30, theta = 20, d = 5, xlab = "x")

The bandwidth by normal reference is h = (1.877,1.840), and by cross-
validation h = (0.556,1.132). The first choice results in a smoother estimate.
Although in Figure 12.13 three modes are evident for both estimates, it ap-
pears that the density estimate corresponding to unbiased cross-validation
may be too rough in this example. o
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FIGURE 12.13: Product kernel estimates of bivariate normal mixture data
in Example 12.15 (normal reference rule at left.)

For kernel density estimates for multivariate data also see kde (ks) [79]
and KernSmooth [301]. Readers are referred to the examples of kde2d (MASS)
for a Gaussian kernel density estimate of the bivariate geyser (MASS) data
with default normal reference bandwidth (also see [293, 5.6]).

12.4 Other Methods of Density Estimation

Orthogonal systems provide an alternate approach to density estimation
[264, 268, 300]. Suppose that the random variable X is supported on the
interval [0,1]. Then one approach to estimation of the density f of X is to
represent f by its Fourier expansion and estimate the Fourier coefficients from
the observed random sample X7, ..., X,,. Although intuitively appealing, the
resulting estimator is not useful because it will tend to a sum of delta functions
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that place probability mass at the individual observations. See [264], [268], or
[300] for an explanation of how this problem is resolved by smoothing to obtain
a more useful density estimator, and how it is generalized to densities with
unbounded support. Scott [264, p. 129] shows that the resulting estimator is
in the form of a fixed kernel estimator. Walter and Shen [300, Sec. 13.3] show
that an estimator based on the Haar wavelets is the traditional histogram
estimator of a density.

Scott [264] and Silverman [268] discuss several other approaches to den-
sity estimation including adaptive kernel methods and cross-validation, near
neighbor estimates, and penalized likelihood methods. An L; approach to
density estimation is covered by Devroye and Gyorfi [74]. Many other cri-
teria have been applied, such as the Kullback-Liebler distance, Hellinger
distance, AIC, etc. Other approaches focus on regression and smoothing
[84, 136, 137, 138, 212|, splines [93, 299|, or generalized additive models
[142, 144]. Some related R packages are ash [265], gam [141], gss [132],
KernSmooth [301], ks [79], locfit [187], MASS [293], sm [32], and splines.

Exercises

12.1 Construct a histogram estimate of density for a random sample of stan-
dard lognormal data using Sturges’ Rule, for sample size n = 100. Re-
peat the estimate for the same sample using the correction for skewness
proposed by Doane [76] in equation (12.2). Compare the number of bins
and break points using both methods. Compare the density estimates
at the deciles of the lognormal distribution with the lognormal density
at the same points. Does the suggested correction give better density
estimates in this example?

12.2 Estimate the IMSE for three histogram density estimates of standard
normal data, from a sample size n = 500. Use Sturges’ Rule, Scott’s
Normal Reference Rule, and the FD Rule.

12.3 Construct a frequency polygon density estimate for the precip dataset
in R. Verify that the estimate satisfies ffo f(z)dz = 1 by numerical
o0
integration of the density estimate.

12.4 Construct a frequency polygon density estimate for the precip dataset,
using a bin width determined by substituting
6 =IQR/1.348
for standard deviation in the usual Normal Reference Rule for a fre-
quency polygon.

12.5 Construct a frequency polygon density estimate for the precip dataset,
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12.7

12.8

12.9

12.10

12.11
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12.13
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using a bin width determined by the Normal Reference Rule for a fre-
quency polygon adjusted for skewness. The skewness adjustment factor
is given in (12.8).

Construct an ASH density estimate for the faithful$eruptions
dataset in R, using width h determined by the normal reference rule.
Use a weight function corresponding to the biweight kernel,

15

K () = 1o

1—tH)2if |t <1, K(t) =0 otherwise.
Construct an ASH density estimate for the precip dataset in R. Choose
the best value for width A* empirically by computing the estimates over
a range of possible values of h and comparing the plots of the densities.
Does the optimal value h/P correspond to the optimal value h* suggested
by comparing the density plots?

The buffalo dataset in the gss [132] package contains annual snowfall
accumulations in Buffalo, New York from 1910 to 1973. The 64 obser-
vations are

126.4 82.4 78.1 51.

39.8 63.6 46.7 72.
71.8 49.1 103.9 51.

90.9 76.2 104.5 87.4 110.5 25.0 69.3 53.5
79.6 83.6 80.7 60.3 79.0 74.4 49.6 54.7
82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7
110.5 65.4 39.9 40. 88.7 71.4 83.0 55.9 89.9 84.8 105.2 113.7
124.7 114.5 115.6 102. 101.4 89.8 71.5 70.9 98.3 55.5

66.1 78.4 120.5 97.0 110.0

DR OO

This data was analyzed by Scott [262]. Construct kernel density esti-
mates of the data using Gaussian and biweight kernels. Compare the
estimates for different choices of bandwidth. Is the estimate more influ-
enced by the type of kernel or the bandwidth?

Construct a kernel density estimate for simulated data from the nor-
mal location mixture 1N(0,1)+ 2N(3,1). Compare several choices
of bandwidth, including (12.13) and (12.14). Plot the true density of
the mixture over the density estimate, for comparison. Which choice of
smoothing parameter appears to be best?

Apply the reflection boundary technique to obtain a better kernel den-
sity estimate for the precipitation data in Example 12.8. Compare the
estimates in Example 12.8 and the improved estimates in a single graph.
Also try setting from = 0 or cut = 0 in the density function.

Write a bivariate density polygon plotting function based on Examples
12.12 and 12.13. Use Example 12.13 to check the results, and then
apply your function to display the bivariate faithful data (Old Faithful

geyser).
Plot a bivariate ASH density estimate of the geyser (MASS) data.

Generalize the bivariate ASH algorithm to compute an ASH density
estimate for a d-dimensional multivariate density, d > 2.
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12.14 Write a function to bin three-dimensional data into a three-way con-
tingency table, following the method in the bin2d function of Exam-
ple 12.12. Check the result on simulated N3(0,I) data. Compare the
marginal frequencies returned by your function to the expected fre-
quencies from a standard univariate normal distribution.
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R Code

Code to generate data as shown in Table 12.1.

N <- c¢(10, 20, 30, 50, 100, 200, 500, 1000, 5000, 10000)

m <- length(N)
out <- matrix(0, nrow = m, ncol = 8)
out[ ,1] <- N
out[ ,5] <- N
for (i in 1:m) {
x <= rnorm(N[i])
out[i, 2:4] <- c(nclass.Sturges(x),
nclass.scott(x), nclass.FD(x))
x <- rexp(N[i])
out[i, 6:8] <- c(nclass.Sturges(x),
nclass.scott(x), nclass.FD(x))
}
print (out)

Code to plot the histograms in Figure 12.4.

library (MASS) #for truehist
par(mfrow = c(2, 2))

x <- sort(rnorm(1000))

y <- dnorm(x)

o <- (1:4) / 4

h <- .35

for (i in 1:4) {

truehist(x, prob = TRUE, h = .35, x0 = o[i],
xlim = c¢(-3.5, 3.5), ylim = c(0, 0.45),

ylab = "Density", main = "")
lines(x, y)
}
par (mfrow = c(1, 1))

Code to plot Figure 12.6.

To display the type of plot in Figure 12.6, first open a new plot to set up
the plotting window, but use type="n" in the plot command so that nothing
is drawn in the graph window yet. Then add the density curves for each point
inside the loop using lines. Finally, add the density estimate using lines

again.
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y <= ¢(-0.77, -0.60, -0.25, 0.14, 0.45,
0.64, 0.65, 1.19, 1.71, 1.74)
for (h in c(.25, .4, .6, 1)) {
x <- seq(-4, 4, .01)
fhat <- rep(0, length(x))
# set up the plot window first
plot(x, fhat, type="n", xlab="", ylab="",
main=paste("h=",h), xlim=c(-4,4), ylim=c(0, .5))
for (i in 1:n) {
# plot a normal density at each sample pt
z <= (x-ylil) / h
f <- dnorm(z)
lines(x, £ / (n * h))
# sum the densities to get the estimates
fhat <- fhat + £ / (n * h)
X
lines(x, fhat, lwd=2) # add density estimate to plot
}

Use par(mfrow = c(2, 2)) to display four plots in one screen.

Code to plot kernels in Figure 12.7.

#see examples for density, kernels in S parametrization
(kernels <- eval(formals(density.default)$kernel))

plot(density(0, from=-1.2, to=1.2, width=2,
kern="gaussian"), type="1", ylim=c(0, 1),
xlab="", main=" n)
for(i in 2:5)
lines(density (0, width=2, kern=kernels[i]), lty=i)
legend ("topright", legend=kernels[1:5],
lty=1:5, inset=.02)



Chapter 13

Introduction to Numerical Methods
in R

13.1 Introduction

This chapter begins with a review of some concepts that should be un-
derstood by any statistician who will apply numerical methods that are im-
plemented in statistical packages such as R. Following this introduction, a
selection of examples are presented that illustrate the application of numer-
ical methods using functions provided in R. Readers should refer to one or
more of the relevant references for a thorough and rigorous presentation of
the underlying principles.

Many excellent references are available on numerical methods. Two recent
texts written to address the problems of statistical computing in particular are
Monahan [210] and Lange [176]. The Monahan text is an excellent resource
for statisticians with a limited background in numerical analysis. Nocedal
and Wright [217] is a graduate level text on optimization. Lange [175] is an-
other graduate level optimization text that features statistical applications.
Cortez [59] covers optimization with algorithms implemented in R. Thisted
[284] covers numerical computation for statistics, including numerical analy-
sis, numerical integration, and smoothing. Givens and Hoeting [129] include
several chapters on optimization, EM algorithm, and numerical integration.

Computer representation of real numbers

A positive decimal number z is represented by the ordered coefficients {d, }
in the series

dp10™ + dpp 110" 4+ +d110" +do +d_1107" +d_51072 + ...
and decimal point separating do and d_1, where d; are integers in {0, 1,...,9}.
The same number can be represented in base 2 using the binary digits {0, 1}

by arpar_1...a1a0.6_1a_o ..., where

T = (1;62’C + ak_12k71 + - 4+ a12+ag+ a_12 V4 a_927%2 4+ ... ,

375
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a; € {0,1}. The point separating ag and a_; is called the radix point. Simi-
larly, = can be represented in any integer base b > 1 by expanding in powers
of b.

R Note 13.1

The function digitsBase in the package sfsmisc [188] returns the
vector of digits that represent a given integer in another base.

Whenever a computer is involved in mathematical calculations, it is very
likely to involve the conversions “from” and “to” decimal, because machines
and humans represent numbers in different bases. Both types of conversions
introduce errors that could be significant in certain cases.

At the lowest level, the computer recognizes exactly two states, like a
switch that is on or off, or a circuit that is open or closed. Therefore, at some
level, the base 2 representation is used in computer arithmetic. Other powers
of 2 such as 8 (octal) or 16 (hexadecimal) are also more natural for low-level
routines than base 10.

Positive integers can always be represented by a finite sequence of digits,
ending with an implicit radix point. For this reason, integers are called fized
point numbers. Numbers that require an explicit radix point in the sequence
of digits may be fixed point or floating point (generally treated as floating
point in calculations). Floating point numbers are represented by a sign, a
finite sequence of digits, and an exponent, similar to the representation of real
numbers in scientific notation. In general, this representation of a real number
is approximate, not exact.

Even though the internal representation of numbers is usually transpar-
ent to the user, who conveniently interacts with the software in the decimal
system, it is important in statistical computing to understand that there are
fundamental differences between mathematical calculations and computer cal-
culations. Mathematical ideas such as limit, supremum, infimum, etc. cannot
be exactly reproduced in the computer. No computer has infinite storage ca-
pacity, so only finitely many numbers can be represented in the computer;
there is a smallest and a largest positive number. See Monahan [210, Ch. 2]
for a discussion of fixed point and floating point arithmetic, and inaccuracies
that can occur in algorithms as simple as calculation of sample variance.
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R Note 13.2

The R variable .Machine holds machine specific constants with infor-
mation on the largest integer, smallest number, etc. For example, in
R-2.5.0 for Windows, the largest integer (.Machine$integer.max) is
231 — 1 = 2147483647. Type .Machine at the command prompt for
the complete list. For portability and reusability of code, tolerances
or convergence criteria should be given in terms of machine constants.
For example, the uniroot function, which seeks a root of a univariate
function, has a default tolerance of .Machine$double.eps~0.25.

Occasionally users are surprised to find that some mathematical identities
appear to be contradicted by the software. A typical example is

> (.3 - .1)

[1] 0.2

> (.3 - .1) == .2
[1] FALSE

> .2 - (.3-.1
[1] 2.775558e-17

The base 2 representation of 0.2 is an infinite series of digits 0.00110011. ..,
which cannot be represented exactly in the computer. Notice that although
the result above is not exactly equal to 0.2, the error is negligible. Good pro-
gramming practice avoids testing the equality of two floating point numbers.

Example 13.1 (Identical and nearly equal). R provides the function
all.equal to check for near equality of two R objects. In a logical expression,
use isTRUE to obtain a logical value.

> isTRUE(all.equal(.2, .3 - .1))

(1] TRUE

> all.equal(.2, .3) #not a logical value
[1] "Mean relative difference: 0.5"

> isTRUE(all.equal(.2, .3)) #always a logical value
[1] FALSE

The isTRUE function is applied in Example 13.9. The identical function
is available for testing whether two objects are identical. The help topic for
identical gives very clear and explicit advice to programmers: “A call to
identical is the way to test exact equality in if and while statements, as
well as in logical expressions that use && or | |. In all these applications you
need to be assured of getting a single logical value.” Also see the examples
below.

> x <-1:4
>y <=2
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> y ==
[1] TRUE
> x ==y #not necessarily a single logical value

[1] FALSE TRUE FALSE FALSE

> identical(x, y) #always a single logical value
[1] FALSE

> identical(y, 2)

[1] TRUE

<

Overflow occurs when the result of an arithmetic operation exceeds the
maximum floating point number that can be represented. Underflow occurs
when the result is smaller than the minimum floating point number. In the
case of underflow, the result might unexpectedly be returned as zero. This
could lead to division by zero or other problems that produce unexpected
and possibly inaccurate results — without warning. Overflow is usually more
obvious, but should be avoided. Good algorithms should set underflows to
zero and give a warning if this may produce unexpected results. Programmers
can avoid many of these problems, however, by carefully coding arithmetic
expressions with the limitations of the machine in mind.

Often the expression to be evaluated is not impossible to compute, but one
needs to be careful about the order of operations. One of the most common,
and easily avoided problems occurs when we need to compute a ratio of two
very large or very small numbers. For example, n!/(n — 2)! = n(n — 1), but
we could easily have trouble computing the numerator or denominator if n
is large. A good approach for this type of problem is to take the logarithm
of the quotient and exponentiate the result. A typical example that arises in
statistical applications is the following.

Example 13.2 (Ratio of two large numbers). Evaluate

I((n—-1)/2)
I(1/2)l((n-2)/2)°

This could be coded using the gamma function in R, but I'(n) = (n — 1)!, so
when n is large, gamma may return Inf and the arithmetic operations could
return NaN. On the other hand, although numerator and denominator are both
large, the ratio is much smaller. Compute the ratio I'((n —1)/2)/I'((n —2)/2)
using the logarithm of the gamma function lgamma. That is, I'(n)/T'(m) =
exp(lgamma(n) - lgamma(m)). Also, recall that I'(1/2) = /x.

> n <- 400

> (gamma((n-1)/2) / (sqrt(pi) * gamma((n-2)/2)))
[1] NaN

> exp(lgamma((n-1)/2) - lgamma((n-2)/2)) / sqrt(pi)
[1] 7.953876
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<

A thorough discussion of computer arithmetic is beyond the scope of this
text. Among the references, Monahan [210] or Thisted [284] are good starting
points on this topic for statistical computing; on computer arithmetic and
algorithms see, e.g., Higham [148] or Knuth [169].

Evaluating Functions

The power series expansion of a function is commonly applied. If f(z) is
analytic, then f(z) can be evaluated in a neighborhood of the point ¢ by a
power series

flx) = Zak(:c —x0)".
k=0

The Taylor series representation of f(z) in a neighborhood of z is
— ™) (x0)
fa) =3 T o,
k=0

also called a Maclaurin series when xg = 0. The infinite series must be trun-
cated in order to obtain a numerical approximation. The power series approx-
imation is thus a (high degree) polynomial approximation. If f has continuous
derivatives up to order (n + 1) in a neighborhood of 0, then the finite Taylor
expansion of f(z) at zo =0 is

zF + R, (),

lim f(r) =3 L k'(())
k=0 ’

x—0

where R, (z) = O(z"*1).

Recall that “O” (big oh) and “o” (little oh) describe the order of conver-
gence of functions. Let f and g be defined on a common interval (a,bd) and
let a < xg < b. Suppose that g(x) # 0 for all z # x¢ in a neighborhood of zg.
Then f(x) = O(g(x)) if there exists a constant M such that |f(z)| < M|g(z)|
as ¢ — xo. If limy_,,, f(z)/g(x) = 0 then f(z) = o(g(x)).

If the finite Taylor expansion is computed in a language such as C or
Fortran, a method is used that avoids repeated multiplications. That is, if
yr = x¥/k! then

ST = 4 f D) = g1 (/1) (0),

saving many multiplications. Computing in R, however, it will usually be
faster to take advantage of the vectorized operations, provided it is known
how many terms are required.
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Example 13.3 (Taylor expansion). Consider the finite Taylor expansion for
the sine function,

sinx = 2": 7(_1)k 2k
= (2k+1)! '

For example, evaluate sin(xr/6) from the Taylor polynomial.

The remainder term R, (x) = O(2"!) can be used to determine the ap-
proximate number of terms required in the finite expansion. Suppose that a
24t degree polynomial is sufficiently accurate at x = m/6. Two methods of
computing the Taylor polynomial are compared below.

The following method of calculation is efficient in C or Fortran code, but
not in R. The timer measures 1000 calculations of the Taylor polynomial.

system. time ({
for (i in 1:1000) {
a <- rep(0, 24)
a0 <-pi / 6
a2 <- a0 * a0
a[1] <- -a0"3 / 6
for (i in 2:24)
ali]l <- - a2 * al[i-1] / ((2*i+1)*(2%i))
a0 + sum(a)}
19)
[1] 0.36 0.01 0.49 NA NA

Compare the version above to the vectorized version below. The vectorized
version appears to be about 5 times faster than the method above. In R code,
vectorized operations like the code below are usually more efficient than loops.

system. time ({
for (i in 1:1000) {
K <=2 % (0:24) + 1
i <= rep(c(l, -1), length=25)
sum(i * (pi/6)°K / factorial(K))}
b
[1] 0.07 0.01 0.08 NA NA

<

Power series expansions are also useful for numerical evaluation of deriva-
tives. Within the common region of the radius of convergence of the power
series and its derivative, one can differentiate the finite expansion term by
term. The next example illustrates this method with a useful function for the
derivative of the zeta function.
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Example 13.4 (Derivative of zeta function). The Riemann zeta function is

defined by
= 1
=3

i=1
which converges for all @ > 1. Write a function to evaluate the first derivative
of the zeta function.
It can be shown that

z—1 =
where
m +1
_ )y (=1)™n! _ 1ogk _ (logm)"
Yo = ¢\ (2) (z — 1)n+1 %ﬂnoo Z n4+1

k=1
are the Stieltjes constants. Differentiating ((a) gives

1 1
’)/1-‘1-’}/2(2’—1)—*’73(2’—1)24—..., a> 1.

('(a) = —m - 2

The Stieltjes constants can be evaluated numerically, and tables of the Stielt-
jes constants are available [1]. More terms can be added if greater accuracy is
needed, but to conserve space, only five of the constants are used in the ver-
sion below. This “light” version of the zeta derivative gives remarkably good
results over the interval (1,2) (see the next example).

zeta.deriv <- function(a) {
z<-a-1
# Stieltjes constants gamma_k for k=1:5
g <- c(
-.7281584548367672e-1,
-.9690363192872318e-2,
.2053834420303346e-2,
.2325370065467300e-2,
.7933238173010627e-3)
i<-c(-1,1, -1, 1, -1)
n <- 0:4
-1/z"2 + sum(i * g * z"n / factorial(n))

<

Another approach to numerical evaluation of the derivative of a function
applies the following central difference formula
flx+h)— flz—h)

f(x) = 57 ,
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for a small value of h. According to [223], h should be chosen so that z and
x + h differ by an exactly representable number.

Example 13.5 (Derivative of zeta function, cont.). Compare the finite series
approximation of the numerical derivative in Example 13.4 with the central
difference formula. That is, for small h, compare

((ath)—¢la—h)
2h

with the value returned by zeta.deriv(a) in Example 13.4. The {(-) function
is implemented in the GNU scientific library, available in the gsl package
[135].

library(gsl)  #for zeta function
z <- c(1.001, 1.01, 1.5, 2, 3, b5)
h <- .Machine$double.eps~0.5
dz <- dq <- rep(0, length(z))
for (i in 1:length(z)) {
v <- z[i] + h
h <- v - z[i]
a0 <- z[i] - h
if (a0 < 1) a0 <- (1 + z[i])/2
al <- z[i] +h
dql[i] <- (zeta(al) - zeta(aO)) / (al - a0)
dz[i] <- zeta.deriv(z[i])

h
[1] 1.490116e-08

cbind(z, dz, dq)

z dz dq
[1,] 1.001 -9.999999e+05 -9.999999e+05
[2,] 1.010 -9.999927e+03 -9.999927e+03
[3,] 1.500 -3.932240e+00 -3.932240e+00
[4,] 2.000 -9.375469e-01 -9.375482e-01
[5,] 3.000 -1.981009e-01 -1.981262e-01
[6,] 5.000 -2.853446e-02 -2.857378e-02

Values of z are given in the first column, values of (’(z) computed by
the finite series approximation are given in column dz, and values of ¢'(z)
computed by the central difference formula are given in column dq. Although
the two estimates are quite close, it appears that the difference in the two
estimates is increasing with z. The finite series approximation can be improved
by adding more terms. o
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13.2 Root-finding in One Dimension

This section will briefly summarize the main ideas behind the Brent min-
imization algorithm [34], on which the R root-finding function uniroot is
based, and illustrate its application with examples. Refer to [34, 175, 217, 223]
for more details. The source code of the Fortran implementation “zeroin.f”
in the GNU Scientific Library (GSL) can be found at the web site http:
//www.gnu.org/software/gsl/.

Let f(z) be a continuous function f : R! — R, A root (or zero) of the
equation f(z) = c¢ is a number z such that g(x) = f(z) — ¢ = 0. Thus, we can
restrict attention to solving f(z) = 0.

One can choose from numerical methods that require evaluation of the
first derivative of f(z), and algorithms that do not require the first derivative.
Newtons’s method or Newton-Raphson method are examples of the first type,
while Brent’s algorithm is an example of the second type of method. In either
case, one must bracket the root between two endpoints where f(-) has opposite
signs.

Bisection method

If f(x) is continuous on [a,b], and f(a), f(b) have opposite signs, then by
the intermediate value theorem it follows that f(¢) = 0 for some a < ¢ < b. The
bisection method simply checks the sign of f(z) at the midpoint z = (a+1b)/2
of the interval at each iteration. If f(a), f(x) have opposite signs, then the
interval is replaced by [a,x] and otherwise it is replaced by [z,b]. At each
iteration, the length of the interval containing the root decreases by half. The
method cannot fail, and the number of iterations needed to achieve a specified
tolerance is known in advance. If the initial interval [a,b] contains more than
one root, then bisection will find one of the roots. The rate of convergence of
the bisection algorithm is linear.

Example 13.6 (Solving f(z) = 0). Solve

2a
a2—|—y2+7y=n—2,
n—1
where a is a specified constant and n > 2 is an integer. Of course, this equation
can be solved directly by elementary algebra, to obtain the exact solution:

. —a _ 9 a N2
y—nli\/n 24a +(7n71) .

Let us compare the exact solution with a numerical solution. Apply the bisec-
tion method to seek a positive solution. If we restate the problem as: find the

solutions of

2ay
f(y)=a2+y2+m—(n—2)=07


http://www.gnu.org
http://www.gnu.org
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the first step is to code the function f. The next step is to determine an
interval such that f(y) has opposite signs at the endpoints. For example, if
a = 1/2 and n = 20, there will be a positive and a negative root. In the
following, the positive root is found, starting from the interval (0, 5n).

f <- function(y, a, n) {
a”2 + y"2 + 2*axy/(n-1) - (n-2)
}

a <- 0.5
n <- 20
b0 <- 0
bl <- 5*n

#solve using bisection
it <= 0
eps <- .Machine$double.eps™0.25
r <- seq(b0, bl, length=3)
y <= c(£f(r[1], a, n), £(z[2], a, n), £(r[3], a, n))
if (y[11 * y[3] > 0)
stop("f does not have opposite sign at endpoints")

while(it < 1000 && abs(y[2]) > eps) {
it <- it + 1
if (y[1l*y[2] < 0) {
r[3] <- r[2]
y[3] <- y[2]
} else {
r[1] <- r[2]
y[1] <- y[2]
}
r[2] <= (r[1] + r[3]) / 2
y[2] <- £(r[2], a=a, n=n)
print(c(r[1], y[1], y[3]-y[2]))
}

The estimate of the root when the stopping condition is satisfied is the value
in r[2] and the value of the function at r[2] is in y[2].

> r[2]

[1] 4.186845

> y[2]

[1] 2.984885e-05
> it

[1] 21

Our exact formula gives the roots y = 4.186841, —4.239473. (Most problems,
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including this one, can be solved more efficiently using the uniroot function,
which is shown in Example 13.7 below.) o

Other methods, such as the secant method, may (formally) converge faster
than the bisection method, but the root may not remain bracketed. These
superlinear methods may be faster for many problems, but may fail to converge
to a root. The secant method assumes that f(z) is approximately linear on
the interval bracketing the root. Inverse quadratic interpolation approximates
f(z) with a quadratic function fitted to the three prior points.

Brent’s method

Brent’s method combines the root bracketing and bisection with inverse
quadratic interpolation. It fits = as a quadratic function of y. If the three
points are (a, f(a)), (b, f(b)), (¢, f(c)), with b as the current best estimate, the
next estimate for the root is found by interpolation, setting y = 0 in the
Lagrange interpolation polynomial

- f@lly— FO)le

(&)~ F@][f(e) — F0)]
v fOlly— S ly= @)y~ Sa)lb

[Fla) — FOIF(@) — f@] " 7 6) — FEIF®) — fla)]

If this estimate is outside of the interval known to bracket the root, bisec-
tion is used at this step. (For details see [34] or [223] or the zeroin.f Fortran
code.) Brent’s method is generally faster than bisection, and it has the sure
convergence of the bisection method.

Brent’s method is implemented in the R function uniroot, which searches
for a zero of a univariate function between two points where the function has
opposite signs.

+

Example 13.7 (Solving f(z) = 0 with Brent’s method: uniroot). Solve

2a
a® + 9% + Y =n-2,
n—1

with ¢ = 0.5,n = 20 as in Example 13.6. The first step is to code the function
f. This function is not complicated, so we code this function inline in the
uniroot statement. The next step is to determine an interval such that f(y)
has opposite signs at the endpoints. The call to uniroot and result are shown
below.

a <- 0.5

n <- 20

out <- uniroot(function(y) {
a”2 + y~2 + 2xaxy/(n-1) - (n-2) 1},
lower = 0O, upper = n*5)
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> unlist(out)
root f.root iter estim.prec
4.186870e+00 2.381408e-04 1.400000e+01 6.103516e-05

In the call to uniroot, we can optionally specify the maximum number of iter-
ations (default 1000) or the tolerance (default .Machine$double.eps™0.25).
The positive solution to f(y) = 0 is (approximately) y = 4.186870. To seek
the negative root, we can apply uniroot again. The interval can be specified
as above, or as shown below.

uniroot (function(y) {a”2 + y~2 + 2*axy/(n-1) - (n-2)},
interval = c(-n*5, 0))$root
[1] -4.239501

Our exact formula (see Example 13.6) gives y = 4.186841, —4.239473. o

R Note 13.3

Also see the polyroot function, to find zeroes of a polynomial with
real or complex coefficients. See the help topic Complex for description
of functions in R that support complex arithmetic.

13.3 Numerical Integration

Basic numerical integration using the integrate function is illustrated in
the following examples, where useful functions are developed for the density
and cdf of the sample correlation statistic.

Numerical integration methods can be adaptive or non-adaptive. Non-
adaptive methods apply the same rules over the entire range of integration.
The integrand is evaluated at a finite set of points and a weighted sum of
these function values is used to obtain the estimate. The numerical estimate
of f: f(z) is of the form Y7, f(x;)w;, where {z;} are points in an interval
containing [a,b] and {w;} are suitable weights.

For example, the trapezoidal rule divides [a, ] into n equal length subin-
tervals length h = (b — a)/n, with endpoints g, z1, ..., Z,, and uses the area
of the trapezoid to estimate the integral over each subinterval. The estimate
on (z;,x11) is (f(x;) + f(xix1))(h/2). The numerical estimate of fab f(x)dx
is

3003 1)+ 550
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If f(x) is twice continuously differentiable, the error is O(f”(z*)/n?), where
x* € (a,b). This is an example of a closed Newton-Cotes integration formula.
See, e.g., [284, Ch. 5] for more examples.

Quadrature methods evaluate the integrand at a finite set of points
(nodes), but these nodes need not be evenly spaced. Suppose that w is a
non-negative function such that f: zFw(z)dr < oo, for all k > 0. Then the
integrand f(z) can be expressed as g(z)w(x).

Note that we have assumed that w(x)/ ffw(x)d:c is a density function
with finite positive moments. For example, we can take w(x) = exp (—22/2),
called Gauss-Hermite quadrature. In this case, ffcoo rFw(z)dr < oo, for all
k > 0, which applies to arbitrary intervals (a,b) on the real line. In Gaus-
sian quadrature, the nodes {x;} selected are the roots of a set of orthogonal
polynomials with respect to w. The normalized orthogonal polynomials also
determine weights {w; }.

The Gaussian Quadrature Theorem implies that if g(x) is 2n times contin-
uously differentiable, then the error in the numerical estimate Y .| w;g(x;)

1S b n B g(zn) (SU*)
/a g(@)w(z)dr — ;wzg(%) = W7

where k, is the leading coefficient of the n** polynomial and z* € (a,b).
Quadrature and other approaches to numerical integration are discussed in
more detail in [129, 176, 284].

When an integrand behaves well in one part of the range of integration,
but not so well in another part, it helps to treat each part differently. Adaptive
methods choose the subintervals based on the local behavior of the integrand.

The integrate function provided in R uses an adaptive quadrature
method to find the approximate value of the integral of a one-variable function.
The limits of integration can be infinite. The maximum number of subin-
tervals, the relative error and the absolute error can be specified, but have
reasonable default values for many problems.

Example 13.8 (Numerical integration with integrate). Compute

_ 13.1
/0 (coshy — pr)n—1’ (13.1)

where —1 < p < 1, =1 < r < 1 are constants and n > 2 is an integer.
The graph of the integrand is shown in Figure 13.1(a). We apply adaptive
quadrature implemented by the integrate function provided in R.

First write a function that returns the value of the integrand. This function
should take as its first argument a vector containing the nodes, and return a
vector of the same length. Additional arguments can also be supplied. This
function or the name of this function is the first argument to integrate.

A simple way to compute the integral for fixed parameters, say (n = 10,
r=20.5,p=0.2)is
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> integrate(function(y){(cosh(y) - 0.1)7(-9)}, 0, Inf)
1.053305 with absolute error < 2.3e-05

The integral for arbitrary (n,r, p) is needed, so write a more general integrand
function with these arguments, and supply the extra arguments in the call to
integrate.

f <- function(y, N, r, rho) {
(cosh(y) - rho * r)”(1 - N)
}
integrate(f, lower=0, upper=Inf,
rel.tol=.Machine$double.eps~0.25,
N=10, r=0.5, rho=0.2)

This version produces the same estimate as above.

To see how the result depends on p, fix n = 10 and r = 0.5 and plot the
value of the integral as a function of p. The plot is shown in Figure 13.1(b),
as produced by the following code.

ro <- seq(-.99, .99, .01)
v <- rep(0, length(ro))
for (i in 1:length(ro)) {
v[i] <- integrate(f, lower=0, upper=Inf,
rel.tol=.Machine$double.eps~0.25,
N=10, r=0.5, rho=ro[i])$value
}
plot(ro, v, type="1", xlab=expression(rho),
ylab="Integral Value (n=10, r=0.5)")

R Note 13.4

Sometimes there is a conflict between named arguments and optional
user-supplied arguments. To avoid the conflict, either choose another
name for the optional argument, or supply both arguments. For ex-
ample, the following produces an error, because of apparent ambiguity
between argument rel.tol and r.

> integrate(f, lower=0, upper=Inf, n=10, r=0.5, rho=0.2)

Error in f(x, ...) : argument "r" is missing, with no default

The integral (13.1) appears in a density function in the following example.

Example 13.9 (Density of sample correlation coefficient). The sample
product-moment correlation coefficient measures linear association between
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FIGURE 13.1: Example 13.8 (n = 10,7 = 0.5, p = 0.2) (a) Integrand,
(b) Value of the integral as a function of p.

two variables. The population correlation coefficient of (X,Y) is

E[X - BEX)(Y - E(Y))]
Var(X)Var(Y) .

If {(X;,Y;), j =1,...,n} are paired sample observations, the sample corre-
lation coefficient is

Y (X = X)(; - Y)

Y (X = X2 (Y - Y)?

R:

(13.2)

Assume that {(X;,Y;), j =1,...,n} are iid with BV N (p1, 2, 01,02, p) (bi-
variate normal) distribution. If p = 0, the density function of R [163, Ch. 32]
is given by

I((n—1)/2) (1 — y2)(n=)/2
(1/2)I'((n —2)/2) ’

For 0 < |p| < 1, the density function is more complicated. Several forms of
the density function are given in [163, p. 549], including;:

" — (n—2)(1 — p2)(n=D/2(] — p2)(n=8)/2 poo duw
fr) = /0 :

7r coshw — pr)n—1’

f(r)= T -l<r<l. (13.3)

(13.4)

for -1 <r<1.
To evaluate the density function (13.4), the integral must be evaluated.
This is covered in Example 13.8. The case p = 0 can be handled separately
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using the simpler formula (13.3). The method for evaluating the constant
I'((n—1)/2)/T((n—2)/2) was discussed in Example 13.2. The following func-
tion combines these results to evaluate the density of the correlation statistic.

.dcorr <- function(r, N, rho=0) {

}

# compute the density function of sample correlation
if (abs(r) > 1 || abs(rho) > 1) return (0)
if (N < 4) return (NA)

if (isTRUE(all.equal(rho, 0.0))) {
a <- exp(lgamma((N - 1)/2) - lgamma((N - 2)/2)) /
sqrt (pi)
return (a * (1 - r"2)"((N - 4)/2))

# if rho not 0, need to integrate
f <- function(w, R, N, rho)
(cosh(w) - rho * R)"(1 - N)

#need to insert some error checking here

i <- integrate(f, lower=0, upper=Inf,
R=r, N=N, rho=rho)$value

cl <= (N -2) * (1 - tho™2)~((N - 1)/2)

c2<- (1 -r2)"((N-4) /2 /pi

return(cl * c2 * i)

Some error checking should be added to this function in case the numerical
integration fails.

As an informal check on the density calculations, plot the density curve.
For p = 0 the density curve should be symmetric about 0 and the shape should
resemble a symmetric beta density. The plot is shown in Figure 13.2.

r <- as.matrix(seq(-1, 1, .01))

dl <- apply(r, 1, .dcorr, N=10, rho=.0)

d2 <- apply(r, 1, .dcorr, N=10, rho=.5)

d3 <- apply(r, 1, .dcorr, N=10, rho=-.5)

plot(r, d2, type="1", 1lty=2, lwd=2, ylab="density")
lines(r, di1, 1lwd=2)

lines(r, d3, lty=4, lwd=2)

legend("top", inset=.02, c("rho = 0", "rho = 0.5",

"rho = -0.5"), 1lty=c(1,2,4), lwd=2)
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FIGURE 13.2: Density of the correlation statistic for sample size 10.

R Note 13.5

Density functions in R are vectorized, but the function .dcorr of Ex-
ample 13.4 is really expecting a single number r, rather than a vector.
Later this function can be extended to a general version dcorr, like
the density functions dnorm, dgamma, etc. in R that accept vector ar-
guments.

13.4 Maximum Likelihood Problems

Maximum likelihood is a method of estimation of parameters of a distri-
bution. The abbreviation MLE may refer to maximum likelihood estimation
(the method), to the estimate, or to the estimator. The method finds a value
of the parameter that maximizes the likelihood function. Thus, an important
class of optimization problems in statistics is the class of maximum likelihood
problems.

Suppose that Xi,...,X,, are random variables with parameter § € © (6
may be a vector). The likelihood function L(6) of random variables X1, ..., X,
evaluated at x1,...,x, is defined as the joint density

L) = f(z1,...,2zn;0).

If X1,...,X, are arandom sample (so X, ..., X,, are iid) with density f(x;0),
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then

n

L(0) = [ [ £(w:;0).
i=1
A maximum likelihood estimate of 0 is a value 6 that maximizes L(6). That
is, 0 is a solution (not necessarily unique) to

L(é) = f(z1,... ,xn;é) = rgleaé(f(xl,...,a:n;ﬁ). (13.5)

If § is unique, 0 is the mazimum likelihood estimator (MLE) of 6.
If 0 is a scalar, the parameter space © is an open interval, and L(6) is
differentiable and assumes a maximum on ©, then 6 is a solution of
d

L) =0. (13.6)

The solutions to (13.6) are solutions to

4y

50 =0, (13.7)

where £(0) = log L(0) is the log-likelihood. In the case where X1,...,X,, are a
random sample, we have

n

) =log [ [ f(wiz0) = 3 log f(wi;6),

i=1
so (13.7) is often easier to solve than (13.6).

Example 13.10 (MLE using mle). Suppose Y7, Y5 are iid with density f(y) =
Be=% 4 > 0. Find the MLE of 6.
By independence,

L(0) = (fe=1)(feb2) = g2~ 0itya),
Thus £(0) = 2log 6 — 6(y1 + y2) and the log-likelihood equation to be solved is

d 2
@5(9)25—@/14—%):07 6> 0.

The unique solution is § = 2/(y1 + y2), which maximizes L(6). Therefore, the
MLE is the reciprocal of the sample mean in this example.

Although we have the analytical solution, let us see how the problem can
be solved numerically using the mle (stats4) function. The mle function
takes as its first argument the function that evaluates —¢(0) = —log(L(6)).

The negative log-likelihood is minimized by a call to optim, an optimization
routine.



Introduction to Numerical Methods in R 393

#the observed sample
y <- c(0.04304550, 0.50263474)

mlogL <- function(theta=1) {
#minus log-likelihood of exp. density, rate 1/theta
return( - (length(y) * log(theta) - theta * sum(y)))
}

library(stats4)
fit <- mle(mlogL)
summary (fit)

Maximum likelihood estimation
Call: mle(minuslogl = mlogL)

Coefficients:
Estimate Std. Error
theta 3.66515 2.591652

-2 log L: -1.195477

Alternately, the initial value for the optimizer could be supplied in the call to
mle; two examples are

mle(mlogL, start=list(theta=1))
mle(mlogl, start=list(theta=mean(y)))

In this example, the maximum likelihood estimate is 6=1 /Y = 3.66515.

The maximum log-likelihood is £(0) = 21og(1/y) — (1/7)(y1 +y2) = 0.5977386,
or —2log(L) = —1.195477. The same result was obtained by mle. o

Suppose 0 satisfies (13.7). Then 6 may be a relative maximum, relative
minimum, or an inflection point of £(#). If (9 < 0, then @ is a local maximum
of log £(9).

The second derivative of the log-likelihood also contains information about
the variance of §. The Fisher information [40, 244] on X at 6 is defined

Z(0) = [~ Eol" (0)]}5-

The Fisher information gives a bound on the variance of unbiased estimators
of 0. The larger the information Z(6), the more information the sample con-
tains about the value of #, and the smaller the variance of the best unbiased
estimator.

If 6 is a vector in R?, © is an open subset of R%, and the first order
partial derivatives of L(6) exist in all coordinates of 8, then 0 must satisfy
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simultaneously the d equations

0 4 .
20, L(0) =0, ji=1,...,d, (13.8)
or the d corresponding log-likelihood equations.

If the log-likelihood is not quadratic, the solution of the likelihood equa-
tions (13.8) is a nonlinear system of d equations in d variables. Thus, maximum
likelihood estimation and maximum likelihood based inference often require
nonlinear numerical methods.

Note that there are several potential problems to finding a solution: the
derivatives of the likelihood function may not exist, or may not exist on all of
O; the optimal # may not be an interior point of ©; or the likelihood equation
(13.6) or (13.8) may be difficult to solve. In this case, numerical methods of
optimization may succeed in finding optimal solutions § satisfying (13.5).

13.5 Application: Evaluating an Expected Value

In this section we compare two approaches for evaluating an integral. The
first approach applies numerical integration using the adaptive quadrature
method implemented in the R function integrate. The second approach is
to numerically evaluate an analytical expression for the result, which involves
an infinite series. The example is based on the Pareto distribution, but the
integral arises in energy goodness-of-fit tests. For example, the energy test
of multivariate normality [277] involves evaluating an integral as an infinite
series.

The Pareto type I distribution has the complementary CDF function

— o\ %
P(X>x):F(ac):<;) ) x> o,
where o > 0 is a location parameter and « is a shape parameter called the
tail index. Note that E[X] < oo only if a > 1, but E|X|? < 00 if 0 < 8 < 1.

In this example, we want to evaluate the integral Ely — X|?, for X ~
Pareto(o,« = 1), where y > o is a constant. This can be viewed as a type of
expected distance of the point y to X. If 0 < 8 < 1, then Ely — X|? < co.
Here two numerical methods of evaluating this integral will be compared: eval-
uation of a derived analytical expression for the expectation, and numerical
integration.

For convenience, the following code uses the VGAM package [325] for the
Pareto probability functions, but these functions could easily be coded in a
few lines by anyone who has read Chapter 3. First, let us see a simple example,
as a demonstration of VGAM, and to check the parameterization.
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y <- VGAM: :rpareto(1000, scale=1, shape=3)
hist(y, prob=TRUE, breaks="scott", main="", ylim=c(0,3))
curve (VGAM: :dpareto(x, scale=1, shape=3), add=TRUE)

The histogram of the simulated Pareto(c = 1, = 3) sample is shown in
Figure 13.3 with the Pareto density for comparison. The distribution is highly
skewed with a heavy right tail. When the shape parameter « is close to 1, the
upper tail is very long and at « = 1 the expected value of the variable is not
finite.

3.0

20 25
I

Density
1.5

0.0

FIGURE 13.3: Histogram with density of a Pareto Type I sample.

Let us fix the parameters for this example: « =1, 0 =1, and 5 = 0.5.

a <-1
s <-1
b <- 0.5

Example 13.11 (Numerical integration). To compute E|y—X|? by numerical
integration, the first step is to write a vectorized function that will return a
vector of values of the integrand in

o ac®

along a grid of points z.

f1 <- function(x, y, s, a, b) {
# the integrand function: |y-x|~b f(x)
(abs(y-x))"b * a * s"a / x"(a+l)
}
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Then, for example, to compute F|2— X|'/? we use the integrate function
with our specified parameters, y = 2, lower limit o (s) and upper limit infinity
(Inf).

> integrate(f1, lower=s, upper=Inf, y=2, s=1, a=1, b=b)
1.487495 with absolute error < 2.8e-05

&

Example 13.12 (Direct evaluation). Alternately, if an analytical expression
for the expectation can be derived, we can try to evaluate the expression
directly. If X ~ P(o,a=1),0< 8 < 1, and yo = (y — 0)/y, then it can be
shown that

yﬁ yﬁ+1
Ely-X|?=(y—0)’ —opy’ 1 =L + =C— hyperg(1,5 + 1; 8 + 2 yo)
g B+1
+oy?'B(B+1,1-B), y >0, (13.9)

where hyperg(a, b; c; z) denotes the Gauss hypergeometric function,

oo
hyperg(a, b; c; z) Z k
(¢)

')
k=0 k k

and (r)y =r(r+1)---(r+ k — 1) denotes the ascending factorial. A related
expected distance in this problem is
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The gs1 library [135] is an R implementation of part of the GNU Scientific
Library, which provides the Gauss hypergeometric function. The function we
need is hyperg_2F1.

The following function computes the analytical expression for case a = 1:

g2 <- function(y, s, b) {
# Compute E|y-X|"b for Pareto(I) with a=1
yO <= (y - s)/y
cO0 <~ gsl::hyperg 2F1(b+1, 1, b+2, y0)
((y = 8)7b) - s*b*(y~(b-1)) *
((y0™b) /b + cO*x(y0~(b+1))/(b+1)) +
s*y~(b-1) * beta(b+1,1-b)
}

We can compute E|2— X |'/? again and compare the result with the numerical
integration method:

> g2(2, s, b)
[1] 1.487495
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This result matches the numerical integration result. o

The expected value E|y — X |7 is a function of y. It is interesting to see the
plot of the function across the domain of X and to compare the two methods
of evaluating the integral.

Example 13.13 (Plot of expected distance function). Let us display a plot
comparing the numerical integration with the analytical expression for the
expectation (13.9). We can generate a grid of points that cover most of the
domain of X using the Pareto quantile function gpareto. The comparison
is easier if the curves are plotted on a log-log scale. Some error checking is
included for the integration method.

p <- c(ppoints(50)/100, ppoints(50))
x <- VGAM::qgpareto(p, scale=s, shape=1)
ex <- g2(x, s=s, b=b)
plot(log(x), log(ex), cex=.25, type="1")
for (i in 1:length(x)) {
y <- x[i]
zi <- integrate(f, lower=s, upper=Inf,
subdivisions=200, rel.tol=.Machine$double.eps”.5,
stop.on.error=FALSE, y=y, s=s, a=1, b=b)
if (zi$message == "OK")
points(log(y), log(zi$value), col=2, cex=.25)
else print(paste("y=", y, zi$Message))
}

The plots shown in Figure 13.4 appear to agree. A closer evaluation of the
differences (not shown) shows that although the methods do not agree exactly,
there is very close agreement across the domain.

By continuity, at the point y = o we can evaluate from formula (13.9) that
E|l — X|'/? = 1/2 when 0 = 1,a = 1,8 = 0.5. Checking both methods, we
have

> integrate(fl, lower=s, upper=Inf, y=s, s=s, a=1, b=b)
1.570796 with absolute error < 1.3e-05

> g2(s, s, b)

[1] 1.570796

which is correct. S

Although both methods appear to work well for this problem, note that
both methods are numerical approximations. The evaluation of expression
(13.9) is only an approximate answer because we are numerically evaluating
an infinite series.
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og(x)

FIGURE 13.4: Plot of the function E|y — X|* as a function of .

Exercises

13.1

13.2

13.3

The natural logarithm and exponential functions are inverses of each
other, so that mathematically log(exp 2) = exp(log z) = x. Show by ex-
ample that this property does not hold exactly in computer arithmetic.
Does the identity hold with near equality? (See all.equal.)

Suppose that X and Y are independent random variables, X ~
Beta(a,b) and Y ~ Beta(r, s). Then it can be shown [8] that

JO N < S [ RA
(X <Y)= Z (a+b+r+sf2)
k=max(r—b,0) a+r—1

Write a function to compute P(X < Y') for any a,b,r,s > 0. Compare
your result with a Monte Carlo estimate of P(X < Y) for (a,b) =
(10,20) and (r,s) = (5,5).

(a) Write a function to compute the k" term in
N R o N ()
K128 2k +1)2k+2) T(k+9+1)

k=0

where d > 1 is an integer, a is a vector in R% and | - || denotes the
Euclidean norm. Perform the arithmetic so that the coeflicients can be
computed for (almost) arbitrarily large & and d. (This sum converges
for all a € R?).

(b) Modify the function so that it computes and returns the sum.

(c) Evaluate the sum when a = (1,2)%.
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13.5

13.6
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Find the intersection points A(k) in (0,v/k) of the curves

Sip_1(a) =P (t(k —1) > ‘i(’“_;j))

and

Sk(a) =P <t(k) > a2k:> )

k+1—a2

for k =4: 25,100,500, 1000, where t(k) is a Student ¢ random variable
with & degrees of freedom. (These intersection points determine the
critical values for a t-test for scale-mixture errors proposed by Székely
[274].)

Write a function to solve the equation

ﬂ(k2_r(1§1)1(k21) /OCk_1 <1 + ku_21 >_k/2 du

a7 k+1 Ck 2\ —(k+1)/2
_20(H k) / (1 N U> du
V 7Tk1—‘(§) 0 k

C =

for a, where

k+1-—a?
Compare the solutions with the points A(k) in Exercise 13.4.

Write a function to compute the cdf of the Cauchy distribution, which
has density

1
On(1+ [(z —n)/0]%)’

—00 < x < 00,

where # > 0. Compare your results to the results from the R function
pcauchy. (Also see the source code in pcauchy.c.)
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Chapter 14

Optimization

14.1 Introduction

We have seen a maximization problem in the MLE example. The ob-
jective function in the MLE problem is the likelihood or the log-likelihood
function. The R function mle applies a general one-dimensional optimization
function optim in a convenient function designed for MLE problems. In this
section, more details about the functions available in R for optimization and
an overview of some optimization methods are discussed.

Many optimization problems in statistics have the form of minimizing or
maximizing a real-valued objective function f(#) with respect to a parameter
vector 8 € RP, p > 1. Without loss of generality we can suppose that the
problem is to minimize f(#). If the problem is to maximize a function f(6)
(as in maximum likelihood problems), then it is equivalent to minimize — f(6).

Some optimization problems can be solved analytically. Most readers have
derived solutions to least squares, where we fit a linear model by minimizing
the sum of squared error with respect to the parameter vector of coefficients
B. Regression and least squares are not part of this chapter. Numerical meth-
ods of optimization are applied for problems which cannot readily be solved
analytically.

R functions for optimization

The following is a summary of optimization functions provided with the
R distribution. See the “Optimization” Task View on CRAN for a list and
description of R packages on CRAN that focus on optimization: https://
cran.r-project.org/web/views/Optimization.html.

e optimize: searches for the minimum (by default) or maximum of a
continuous univariate function, by combining golden section search and
parabolic interpolation.

e optim: offers a selection of several methods, for a parameter vector 6 €
RP. Some of the methods available are

— Nelder-Mead (robust but slower to converge; it uses only function
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values, does not require derivatives so it can be applied to discon-
tinuous objective functions).

— BFGS (Broyden, Fletcher, Goldfarb and Shanno; the most popular
quasi-Newton method according to [217]).

— L-BFGS-B (BFGS with lower and upper bounds, i.e., box con-
straints).

— CG (conjugate gradients).
— SANN (simulated annealing, a stochastic optimization method).

— Brent (for a single parameter, using optimize).

e constrOptim: linearly constrained optimization; minimize a function
subject to linear inequality constraints.

e nlm: nonlinear minimization.
e mle: a wrapper for optim designed for maximum likelihood problems.

Some of these methods are outlined below.

14.2 One-dimensional Optimization

There are several approaches to one-dimensional optimization imple-
mented in R. Many types of problems can be restated so that the root-finding
function uniroot can be applied. The nlm function implements nonlinear min-
imization with a Newton-type algorithm. The documentation for the optimize
function indicates that it is C translation of Fortran code based on the Algol
60 procedure “localmin” given in [34], which implements a combination of
golden section search and successive parabolic interpolation.

Example 14.1 (One-dimensional optimization with optimize). Maximize

the function
_log(1 4 log(x))

f@) = log(1+x)
with respect to x.

f <- function(x)
log(x + log(x))/log(1+x)

curve(f(x), from = 2, to = 15, ylab = "f(x)")

The graph of f(z) in Figure 14.1 shows that the maximum occurs between
4 and 8. Apply optimize on the interval (4, 8). The default is to minimize
the function. To maximize f(z), set maximum = TRUE. The default tolerance
is .Machine$double.eps~0.25.
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optimize(f, lower = 4, upper = 8, maximum = TRUE)
$maximum

[1] 5.792299

$objective

[1] 1.055122

1.05
I

1.00
I

0.95
I

0.90
I

FIGURE 14.1: The function f(z) in Example 14.1.

14.3 Maximum Likelihood Estimation with mle

The mle function in the package stats4 is a wrapper for optim, which uses
BFGS (a quasi-Newton method) by default. The first argument minuslogl is
the name of a user-defined function to compute the negative log-likelihood.
Other parameters might be required depending on which optimization method
is selected. Refer to the documentation for optim for details.

Example 14.2 (MLE: Gamma distribution). Let z1,...,2, be a random
sample from a Gamma(r, \) distribution (r is the shape parameter and A is
the rate parameter). In this example, § = (r,\) € R? and © = RT x R*. Find
the maximum likelihood estimator of § = (r, ).

The likelihood function is

n

AT n
L(r,\) = BR Ha?z_l exp(—)\in), x; >0,
=1

= =1
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and the log-likelihood function is
(r,\) =nrlogA —nlogDl(r)+ (r—1) Zlogmlf)\sz (14.1)

The problem is to maximize (14.1) with respect to r and A. In this form it is
a two-dimensional optimization problem. This problem can be reduced to a
one-dimensional root-finding problem. Find the simultaneous solution(s) (r, \)
to

;Az Zw =0; (14.2)
0
o L(r, ) =nlog A ; = 0. (14.3)

Equation (14.2) implies A = #/Z. Substituting A for A in (14.3) reduces the
problem to solving

P I'(#)
log = log z; — —0 14.4
nogf—l—; ogx nF(f) (14.4)

for #. Thus, the MLE (7, A) is the simultaneous solution (r, \) of

1 n
log A — 1 i = )\7; r =
og —l—nZOgac P(AT) T

i=1

I
)\ )

where 1(t) = 4logT'(t) = I"(t)/T'(t) (the digamma function in R). A numerical
solution is easily obtained using the uniroot function.

In the following simulation experiment, random samples of size n = 200 are
generated from a Gamma(r = 5, A = 2) distribution, and the parameters are
estimated by optimizing the likelihood equations using uniroot. The sampling
and estimation is repeated 20000 times. Below is a summary of the estimates
obtained by this method.

m <- 20000

est <- matrix(0, m, 2)
n <- 200

r <- 5

lambda <- 2

obj <- function(lambda, xbar, logx.bar) {
digamma(lambda * xbar) - logx.bar - log(lambda)
}

for (i in 1:m) {
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x <- rgamma(n, shape=r, rate=lambda)

xbar <- mean(x)

u <- uniroot(obj, lower = .001, upper = 10e5,
xbar = xbar, logx.bar = mean(log(x)))

lambda.hat <- u$root

r.hat <- xbar * lambda.hat

est[i, ] <- c(r.hat, lambda.hat)

}

ML <- colMeans(est)
[1] 5.068116 2.029766

The average estimate for the shape parameter r was 5.068116 and the average
estimate for A was 2.029766. The estimates are positively biased, but close to
the target parameters (r = 5, A = 2).

Recall that a maximum likelihood estimator is asymptotically normal. For
large n, A ~ N(\, 0%) and # ~ N(r,03) where 0% and o3 are the Cramér-Rao
lower bounds of A and r, respectively. The histogram of replicates \ is shown
in Figure 14.2(a), and the histogram of replicates # is shown in Figure 14.2(b).
Here n = 200 is not very large, and the histogram of replicates in both cases
is slightly skewed but close to normal.

hist(est[, 1], breaks="scott", freq=FALSE,
xlab="r", main="")
points(ML[1], O, cex=1.5, pch=20)

hist(est[, 2], breaks="scott", freq=FALSE,
xlab=bquote(lambda), main="")
points(ML[2], O, cex=1.5, pch=20)

14.4 Two-dimensional Optimization

In the gamma MLE problem, we seek the maximum of a two-parameter
likelihood function. Although it is possible to simplify the problem and solve it
as in Example 14.2 it serves as a simple example to illustrate the optim general
purpose optimization function in R. It implements Nelder-Mead [215], quasi-
Newton, and conjugate-gradient algorithms [99], and also methods for box-
constrained optimization and simulated annealing. See Nocedal and Wright
[217] and the R manual [226] for reference on these methods and their imple-
mentation.
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FIGURE 14.2: Replicates of maximum likelihood estimates by numerical
optimization of the likelihood of a Gamma(r = 5, A = 2) random variable in
Example 14.2.

The syntax for optim is

optim(par, fn, gr = NULL, method =
c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE, ...)

The default method is Nelder-Mead. The first argument par is a vector of
initial values of the target parameters, and fn is the objective function. The
first argument to fn is the vector of target parameters and its return value
should be a scalar.

Example 14.3 (Two-dimensional optimization with optim). The objective
function to be maximized is the log-likelihood function

log L(0|z) = nrlog A+ (r — 1) Zlogmi - )\in —nlogT(r),

i=1 i=1

and the parameters are § = (1, \). The log-likelihood function is implemented
as

LL <- function(theta, sx, slogx, n) {
r <- thetal1]
lambda <- thetal2]
loglik <- n * r * log(lambda) + (r - 1) * slogx -
lambda * sx - n * log(gamma(r))
- loglik
}
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which avoids some repeated calculation of the sums sx = >, ; and slogx
= Z?Zl log ;. As optim performs minimization by default, the return value
is —log L(0). Initial values for the estimates must be chosen carefully. For
this problem, the method of moments estimators could be given for the initial
values of the parameters, but for simplicity » = 1 and A = 1 are used here as
the initial values. If x is the random sample of size n, the optim call is

optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)

The return object includes an error code $convergence, which is 0 for success
and otherwise indicates a problem. The MLE is computed for one sample
below.

n <- 200
r <- b; lambda <- 2
x <- rgamma(n, shape=r, rate=lambda)

optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)

# results from optim

parl 5.278565
par2 2.142059
value 284 .550086
counts.function 73.000000
counts.gradient NA
convergence 0.000000

This result indicates that the Nelder-Mead (default) method successfully con-
verged to # = 5.278565 and A = 2.142059. The precision can be adjusted by
reltol. The algorithm stops if it is unable to reduce the value by a factor
of reltol, which defaults to sqrt (.Machine$double.eps) = 1.490116e-08 in
this computation.

The simulation experiment below repeats the estimation procedure for
comparison with the results in Example 14.2.

mlests <- replicate(20000, expr = {
x <- rgamma(200, shape = 5, rate = 2)
optim(c(1,1), LL, sx=sum(x), slogx=sum(log(x)), n=n)$par
1))

colMeans (t (mlests))

[1] 5.068109 2.029763

The estimates obtained by the two-dimensional optimization of (14.1) have
approximately the same average value as the estimates obtained by the one-
dimensional root-finding approach in Example 14.2. o



408 Statistical Computing with R

R Note 14.1

When replicating a vector, note that replicate fills a matrix in column
major order. In the example above, the vector in each replicate is length
2, so the matrix has 2 rows and 20000 columns. The transpose of this
result is the two-dimensional sample of replicates.

Example 14.4 (MLE for a quadratic form). Consider the problem of es-
timating the parameters of a quadratic form of centered Gaussian random
variables given by

Y = MX2 4 X2+ + A X2,

where X; are iid standard normal random variables, j = ,k, and
A1 > -+ > Ag > 0. By elementary transformations, each Y = /\ X2 has
a gamma distribution with shape parameter 1/2 and rate parameter 1 / (2/\ ),
j=1,...,k. Hence Y can be represented as the mixture of the k£ independent

gamma variables,
1 1 1 1
G<2 2)\1) + G(2 2/\k>

The notation above means that Y can be generated from a two-stage experi-

ment. First, a random integer J is observed, where J is uniformly distributed

on the integers 1 to k. Then a random variate Y from the distribution of Y ~
1

Gammal( 3, W) is observed.

Assume that Z _1A; = 1. Suppose a random sample yi,...,Ym is ob-
served from the dlstrlbutlon of Y, and k = 3. Find the maximum likelihood
estimate of the parameters A\;, 7 = 1,2, 3.

This problem can be approached by numerical optimization of the log-
likelihood function with two unknown parameters, \; and As. The density of
the mixture is

IIU

flA) = ij (YA,

where f;(y|A) is the gamma density Wlth shape parameter 1/2 and rate pa-
rameter 1/(2);). The log-likelihood can be written in terms of two unknown
parameters Ay and Ag, with A3 =1 — Ay — Ao

LL <- function(lambda, y) {
lambda3 <- 1 - sum(lambda)
f1 <- dgamma(y, shape=1/2, rate=1/(2xlambdal1]))
f2 <- dgamma(y, shape=1/2, rate=1/(2*lambda[2]))
£3 <- dgamma(y, shape=1/2, rate=1/(2*lambda3))
f <- £f1/3 + £2/3 + £3/3  #density of mixture
return( -sum(log(f))) #returning -loglikelihood
}
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The sample data in this example is generated from the quadratic form with
A = (0.60,0.25,0.15). Then the optim function is applied to search for the
minimum of LL, starting with initial estimates A = (0.5,0.3,0.2).

set.seed(543)

m <- 2000

lambda <- c(.6, .25, .15) #rate is 1/(2 lambda)
lam <- sample(lambda, size = 2000, replace = TRUE)
y <- rgamma(m, shape = .5, rate = 1/(2%lam))

opt <- optim(c(.5,.3), LL, y=y)
theta <- c(opt$par, 1 - sum(opt$par))

Results are shown below. The return code in opt$convergence is 0, indicating
successful convergence. The optimal value obtained for the log-likelihood was
736.325 at the point (A1, A2) = (0.5922404,0.2414725).

> as.data.frame(unlist(opt))

unlist (opt)
parl 0.5922404
par2 0.2414725
value -736.3250225
counts.function 43.0000000
counts.gradient NA
convergence 0.0000000

> theta
[1] 0.5922404 0.2414725 0.1662871

The maximum likelihood estimate is A = (0.592, 0.241,0.166). The data was
generated with parameter values (0.60,0.25,0.15). For another approach to
estimating ), see Example 14.5. o

Remark 14.1. The problem of approximating the distribution of quadratic
forms has received much attention in the literature over the years. Many the-
oretical results and numerical methods have been developed for this impor-
tant class of distributions. On numerical approximations for the distribution
of quadratic forms of normal variables, see Imhof [154, 155] and Kuonen [171].

14.5 The EM Algorithm

The EM (Expectation-Maximization) algorithm is a general optimization
method that is often applied to find maximum likelihood estimates when data
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are incomplete. Following the seminal paper of Dempster, Laird and Rubin
[70] in 1977, the method has been widely applied and extended to solve many
other types of statistical problems. For a recent review of EM methods and
extensions see [185, 201, 306].

Incompleteness of data may arise from missing data as is often the case
with multivariate samples, or from other types of data such as samples from
censored or truncated distributions, or latent variables. Latent variables are
unobservable variables that are introduced in order to simplify the analysis in
some way.

The main idea of the EM algorithm is simple, and although it may be slow
to converge relative to other available methods, it is reliable at finding a global
maximum. Start with an initial estimate of the target parameter, and then
alternate the E (expectation) step and M (maximization) step. In the E step,
compute the conditional expectation of the objective function (usually a log-
likelihood function) given the observed data and current parameter estimates.
In the M step, the conditional expectation is maximized with respect to the
target parameter. Update the estimates and iteratively repeat the E and M
steps until the algorithm converges according to some criterion. Although
the main idea of EM is simple, for some problems computing the conditional
expectation in the E step can be complicated. For incomplete data, the E step
requires computing the conditional expectation of a function of the complete
data, given the missing data.

Example 14.5 (EM algorithm for a mixture model). In this example, the
EM algorithm is applied to estimate the parameters of the quadratic form
introduced in Example 14.4. Recall that the problem can be formulated as
estimation of the rate parameters of a mixture of gamma random variables.
Although the EM algorithm is not the best approach for this problem, as
an exercise we repeat the estimation for k¥ = 3 components (two unknown
parameters) as outlined in Example 14.4.

The EM algorithm first updates the posterior probability p;; that the ith
sample observation 1; was generated from the j** component. At the t** step,

2O = i wily, A1)
iy k ?
T #filyily, A®)

where A(*) is the current estimate of the parameters {\;}, and f;(y;|y, \®)
is the Gamma(1/2, 1/ (2A§t))) density evaluated at y;. Note that the mean of
the j** component is A; so the updating equation is

m (t)
M(t+1) _ 2i—1Pij Yi
! > pyY

In order to compare the estimates, we generate the data from the mixture Y
using the same random number seed as in Example 14.4.
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set.seed(543)

lambda <- c(.6, .25, .15) #rate is 1/(2lambda)
lam <- sample(lambda, size = 2000, replace = TRUE)
y <- rgamma(m, shape = .5, rate = 1/(2%lam))

N <- 10000 #max. number of iterations
L <- c(.5, .4, .1) #initial est. for lambdas
tol <- .Machine$double.eps~0.5

L.old <- L + 1

for (j in 1:N) {
f1 <- dgamma(y, shape=1/2, rate=1/(2+L[1]))
f2 <- dgamma(y, shape=1/2, rate=1/(2*L[2]))
£3 <- dgamma(y, shape=1/2, rate=1/(2xL[3]))
py <- f1 / (f1 + £2 + £3) #posterior prob y from 1
qy <- £2 / (f1 + £2 + £3) #posterior prob y from 2
ry <- £3 / (f1 + £2 + £3) #posterior prob y from 3

mul <- sum(y * py) / sum(py) #update means
mu2 <- sum(y * qy) / sum(qy)

mu3 <- sum(y * ry) / sum(ry)

L <- c(mul, mu2, mu3) #update lambdas

L <- L / sum(L)

if (sum(abs(L - L.old)/L.old) < tol) break
L.old <- L
}

Results are shown below.

print(list(lambda = L/sum(L), iter = j, tol = tol))

$lambda [1] 0.5954759 0.2477745 0.1567496
$iter [1] 592
$tol [1] 1.490116e-08

Here the EM algorithm converged in 592 iterations (within < 1.5e — 8) to
the estimate \ = (0.595,.248,.157). The data was generated with parameters
(0.60,0.25,0.15). Compare this result with the maximum likelihood estimate
obtained by two-dimensional numerical optimization of the log-likelihood func-
tion in Example 14.4. o

14.6 Linear Programming — The Simplex Method

The simplex method is a widely applied optimization method for a special
class of constrained optimization problems with linear objective functions and
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linear constraints. The constraints usually include inequalities, and therefore
the region over which the objective function is to be optimized (the feasible
region) can be described by a simplex. Linear programming methods include
the simplex method and interior point methods, but here we illustrate the
simplex method only. See Nocedal and Wright [217, Ch. 13] for a summary of
the simplex method.

Given m linear constraints in n variables, let A be the m x n matrix of
coefficients, so that the constraints are given by Az > b, where b € R™. Here
we suppose that m < n. An element x € R™ of the feasible set satisfies the
constraint Az > b. The objective function is a linear function of n variables
with coefficients given by vector c. Hence, the objective is to minimize ¢’ x
subject to the constraint Az > b.

The problem as stated above is the primal problem. The dual problem is:
maximize b?y subject to the constraint ATy < ¢, where y € R"™. The duality
theorem states that if either the primal or the dual problem has an optimal
solution with a finite objective value, then the primal and the dual problems
have the same optimal objective value.

The vertices of the simplex are called the basic feasible points of the fea-
sible set. When the optimal value of the objective function exists, it will be
achieved at one of the basic feasible points. The simplex algorithm evaluates
the objective function at the basic feasible points, but selects the points at
each iteration in such a way that an optimal solution is found in relatively
few iterations. It can be shown (see, e.g., [217, Thm. 13.4]) that if the linear
program is bounded and not degenerate, the simplex algorithm will terminate
after finitely many iterations at one of the basic feasible points.

The simplex method is implemented by the simplex function in the boot
package [36]. The simplex function will maximize or minimize the linear func-
tion ax subject to the constraints Ajx < by, Asx > ba, Azx = b3, and x > 0.
Either the primal or dual problem is easily handled by the simplex function.

Example 14.6 (Simplex algorithm). Use the simplex algorithm to solve the
following problem.
Maximize 2x + 2y + 3z subject to

—2r+y+2<1
dr —y+32<3
z>0,y>0,2>0.

For such a small problem, it would not be too difficult to solve it directly,
because the theory implies that if there is an optimal solution, it will be
achieved at one of the vertices of the feasible set. Hence, we need only evalu-
ate the objective function at each of the finitely many vertices. The vertices are
determined by the intersection of the linear constraints. The simplex method
also evaluates the objective function as it moves from one vertex to another,
usually changing the coordinates in one vertex only at each step. The trick is
to decide which vertex to check next by moving in the direction of greatest
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increase/decrease in the objective function. Eventually, for bounded, nonde-
generate problems, the value of the objective function cannot be improved and
the algorithm terminates with the solution. The simplex function implements
the algorithm.

library(boot)  #for simplex function

Al <- rbind(c(-2, 1, 1), c(4, -1, 3))

bl <- c(1, 3)

a <-c(2, 2, 3)

simplex(a = a, Al = Al, bl = bl, maxi = TRUE)

Optimal solution has the following values
x1 x2 x3
2 5 0
The optimal value of the objective function is 14.

14.7 Application: Game Theory

In the linear program of Example 14.6, the constraints are inequalities.
Equality constraints are also possible. Equality constraints might arise if, for
example, the sum of the variables is fixed. If the variables represent a discrete
probability mass function, the sum of the probabilities must equal one. We
solve for a probability mass function in the next problem. It is a classical
problem in game theory.

Example 14.7 (Solving the Morra game). One of the world’s oldest known
games of strategy is the Morra game. In the 3-finger Morra game, each player
shows 1, 2, or 3 fingers, and simultaneously each calls his guess of the number
of fingers his opponent will show. If both players guess correctly, the game is a
draw. If exactly one player guesses correctly, he wins an amount equal to the
sum of the fingers shown by both players. This example appears in Dresher
[77] and in Székely and Rizzo [278]. For more details on methods of solving
games, see Owen [220].

The strategies for each player are pairs (d, g), where d is the number of
fingers and g is the guess. Thus, each player has nine pure strategies, (1,1),
(1,2), ..., (3,3). This is a zero-sum game: the gain of the first player is the
loss of the second player. Player 1 seeks to maximize his winnings, and Player
2 seeks to minimize his losses. The game can be represented by the payoff
matrix in Table 14.1.
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TABLE 14.1: Payoff Matrix of the Game of Morra

Strategy 1 2 3 4 5 6 7 8 9
1 o 2 2 -3 0 0 -4 0 O
2 -2 0 0 0 3 3 -4 0 O
3 -2 0 0 -3 0 0 o0 4 4
4 3 0 3 0 -4 0 0 -5 0
5 0o -3 0 4 0 4 0 -5 0
6 0o -3 0 0 -4 0 5 0 5
7 4 4 0 0O O -5 0 0 -6
8 0o 0 -4 5 5 0 0 0 -6
9 0o 0 -4 0 0 -5 6 6 0

Denote the payoff matrix by A = (a;;). By von Neumann’s minimax the-
orem [297], the optimal strategies of both players in this game are mixed
strategies because min; max; a;; > max; min; a;;. A mized strategy is simply
a probability distribution (z1,...,z9) on the set of strategies, where strategy
J is chosen with probability x;.

The minimax theorem implies that if both players apply optimal strategies
z* and y*, respectively, then each player has expected payoff v = x*TAy*, the
value of the game. If the first player applies an optimal strategy x* against
any strategy y of the other player, his expected gain is at least v. Introduce
the variable z19 = v, and let = (x1,..., 29, Z10)-

Let A; be the matrix formed by augmenting A with a column of -1’s.
Then since J;*TAy > v for every pure strategy y; = 1, we have the system
of constraints Ayz < 0. The equality constraint is >\, 2; = 1. The simplex
function automatically includes the constraints x; > 0. (To be sure that v > 0,
one can translate the payoff matrix by subtracting min (A) from each element.
The set of optimal strategies does not change.)

Define the 1 x (n+1) vector A3 =[1,1,...,1,0]. Maximize v = 219 subject
to the constraints A;x > 0 and Aszx = 1. Keep in mind that the optimal z
returned by simplex will be * = (z1,...,2y) and v = Typaq.

Note that we are interested in optimal solutions of both the primal and the
dual problem, with analogous constraints and objective for the second player.
All two-player zero-sum games have similar representations as linear programs,
so the solution can be obtained for general m x n two-player zero-sum games.
Our function solve.game has the payoff matrix as its single argument, and
returns in a list, the payoff matrix, optimal strategies, and the value of the
game.
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solve.game <- function(4) {

#solve the two player zero-sum game by simplex method

#optimize for player 1, then player 2

#maximize v subject to ...

#let x strategies 1:m, and put v as extra variable

#A1, the <= constraints

#

min.A <- min(A)

A <- A - min.A #so that v >= 0

max.A <- max(A)

A <- A / max(h)

m <- nrow(A)

n <- ncol(4)

it <- n”3

a <- c(rep(0, m), 1) #objective function

A1l <- -cbind(t(A), rep(-1, n)) #constraints <=

bl <- rep(0, n)

A3 <- t(as.matrix(c(rep(1l, m), 0))) #constraints sum(x)=1

b3 <- 1

sx <- simplex(a=a, Al=A1, bl=bl, A3=A3, b3=b3,
maxi=TRUE, n.iter=it)

#the ’solution’ is [x1,x2,...,xm | value of game]

#

#minimize v subject to ...

#let y strategies 1:n, with v as extra variable

a <- c(rep(0, n), 1) #objective function

A1l <- cbind(A, rep(-1, m)) #constraints <=

bl <- rep(0, m)

A3 <- t(as.matrix(c(rep(l, n), 0))) #constraints sum(y)=1

b3 <- 1

sy <- simplex(a=a, Al=A1, bl=bl, A3=A3, b3=Db3,
maxi=FALSE, n.iter=it)

soln <- list("A" = A * max.A + min.A,

"x" = gx$soln[1:m],

"y" = sy$soln[1:n],

"y" = sx$soln[m+1] * max.A + min.A)
soln
}

Although the function solve.game applies in principle to arbitrary m x n
games, it is of course limited in practice to systems that are not too large for
the simplex (boot) function to solve.

Now we apply the function solve.game to solve the Morra game. A list
object is returned that contains optimal strategies for each player and the
value of the game.
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#enter the payoff matrix

A <- matrix(c( 0,-2,-2,3,0,0,4,0,0,
2,0,0,0,-3,-3,4,0,0,
2,0,0,3,0,0,0,-4,-4,
-3,0,-3,0,4,0,0,5,0,
0,3,0,-4,0,-4,0,5,0,
0,3,0,0,4,0,-5,0,-5,
-4,-4,0,0,0,5,0,0,6,
0,0,4,-5,-5,0,0,0,6,
0,0,4,0,0,5,-6,-6,0), 9, 9)

library(boot) #needed for simplex function
s <- solve.game(A)

The optimal strategies returned by solve.game are the same for both players

(the game is symmetric).
> round(cbind(s$x, s$y), 7)
[,1] [,2]
x1 0.0000000 0.0000000
x2 0.0000000 0.0000000
x3 0.4098361 0.4098361
x4 0.0000000 0.0000000
x5 0.3278689 0.3278689
x6 0.0000000 0.0000000
x7 0.2622951 0.2622951
x8 0.0000000 0.0000000
x9 0.0000000 0.0000000

Each player should
distributions above.

It can be shown (see, e.g., [77]) that the extreme points of the set of optimal
strategies of either player for this Morra game are

randomize their strategies according to the probability

(0,0,5/12,0,4/12,0,3/12,0,0), (14.5)
(0,0,16/37,0,12/37,0,9/37,0,0), (14.6)
(0,0,20/47,0,15/47,0,12/47,0,0), (14.7)
(0,0,25/61,0,20/61,0,16/61,0,0). (14.8)

Notice that the solutions obtained by the simplex method in this example
correspond to the extreme point (14.8). S

For linear and integer programming, also see the 1p function in the con-
tributed package 1pSolve [29].
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Exercises

14.1 Use the simplex algorithm to solve the following problem:
Minimize 4z + 2y + 9z subject to

20 +y+2<2
r—y+32<3
z>0,y>0,2z2>0.

14.2 In the Morra game, the set of optimal strategies are not changed if
a constant is subtracted from every entry of the payoff matrix, or a
positive constant is multiplied times every entry of the payoff matrix.
However, the simplex algorithm may terminate at a different basic fea-
sible point (also optimal). Compute B <- A + 2, find the solution of
game B, and verify that it is one of the extreme points (14.5)—(14.8) of
the original game A. Also find the value of game A and game B.
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Chapter 15

Programming Topics

15.1 Introduction

This chapter covers selected programming topics for more experienced R
users. The selection of topics is by no means comprehensive, but rather a
collection of information that tends to be helpful for developing computational
programs, such as benchmarking code or finding the source code of functions.
Interested readers can find many published and online resources; some good
general references are “Advanced R” [312] (online at http://adv-r.had.co.
nz/) and “Efficient R Programming” [127] (online at https://csgillespie.
github.io/efficientR/).

Packages used in the examples of this chapter are microbenchmark, rbench-
mark, MASS, mvtnorm, profvis, pryr, and ggplot2. The Rcpp package [82] is
used in Section 15.6. In addition, the dplyr, knitr, and Lahman packages are
used in the examples of Section 15.7.

15.2 Benchmarking: Comparing the Execution Time of
Code

To improve the execution time of R code, it is helpful to compare the tim-
ings of different expressions that are equivalent ways to perform a computing
task. Often a small chunk of code is responsible for a large chunk of computing
time, particularly if the code is executed repeatedly within a program. Users
may sometimes be surprised to see that some familiar methods are slower than
other convenient alternative methods. This chapter includes several examples
and exercises that show how to investigate the performance of code in terms
of computing time.

We will use two external packages for benchmarking in this chapter, mi-
crobenchmark and rbenchmark. These packages can be installed from CRAN
using the Package Install dialog in RStudio or by entering
install.packages(c("rbenchmark", "microbenchmark")) in the Console.
Other R packages are available for benchmarking; however, for most applica-
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tions that would likely correspond to the topics in this book, microbenchmark
is recommended.

Benchmarks are of course most useful for relative timing comparisons.
Absolute timing can vary greatly, depending on the speed of the processor,
memory available, background tasks running, and other issues. To compensate
for the variance due to background tasks running (such as anti-virus, backup,
indexing, cloud services, etc.), benchmark utilities repeat the timing several
times (say, 100 times) and report either the average or a summary of the
distribution of times including the average.

As we are most interested in the relative performance of some operation
compared to others, a statistic such as the ratio of computing times is helpful.
A graphical display of the distribution of times is very helpful.

15.2.1 Using the microbenchmark Package

The microbenchmark package [203] provides a convenient utility function
microbenchmark that performs sub-millisecond accurate timing of one or more
expressions. The documentation for microbenchmark states: “This function
is only meant for micro-benchmarking small pieces of source code and to
compare their relative performance characteristics. You should generally avoid
benchmarking larger chunks of your code using this function. Instead, try using
the R profiler to detect hot spots and consider rewriting them in C/C++ or
FORTRAN.” For longer running pieces of code another option is provided in
the rbenchmark package, discussed in Section 15.2.2.

The microbenchmark function displays its results in a summary table,
which has the same information as the R summary function. The results can
be displayed graphically, which is much easier to interpret. Parallel boxplots
or the ggplot2 violin plot can be displayed. The violin plots combine a density
estimate for each set of times in a display similar to parallel boxplots. In
violin plots, the density is reflected along the horizontal axis, which gives it
the “violin” shape. For the timings, the violin plot uses a logarithmic scale
which helps compare times that may be of different orders of magnitude.

Example 15.1 (Benchmarking methods to generate a sequence). Several
different methods for creating a sequence of integers are available in R. Inter-
estingly, the timings obtained with the microbenchmark function reveal that
these functions are not equally efficient.

In this example, we use the microbenchmark function to compare timings.
We also load the ggplot2 package for a nice graphical display of the results.
Saving the return value allows us to display both the summary and the plot
of the results.

Three methods of generating the sequence {1,2,3,...,1000} will be timed.
First, let us check whether the three methods have identical results. The str
(structure) function is convenient for this comparison.
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sl <-1:10

s2 <- seq(1, 10, 1)

s3 <- seq.int(1, 10, 1)

df <- data.frame(sl=sl1, s2=s2, s3=s3)

str(df)

’data.frame’: 10 obs. of 3 variables:
$ s1: int 123456789 10

$s2: num 123456789 10

$ s3: num 12345678910

Although these sequences have equal values, they are stored as different
types. Only the first one is stored as type integer. Below we will see that the
first approach is also the fastest of the three.

library(microbenchmark)
library(ggplot2)

n <- 1000

mb <- microbenchmark(
seq(1, n, 1),
seq.int(1, n, 1),
1:n,

)

mb
autoplot(mb) # display a violin plot

This produces the summary:

Unit: nanoseconds
expr min 1q mean median uq max neval
seq(1, n, 1) 32000 35358 38483.09 35950 37136 107852 100
seq.int(1, n, 1) 1185 1975 2228.20 1976 2370 7506 100
1:n 395 395 849.41 790 790 3951 100

and the violin plot (from ggplot2) shown in Figure 15.1. Optionally,
boxplot (mb) displays the results in parallel boxplots.

Each expression was evaluated 100 times (neval) by default, and the data
summary for each set of timings is reported in the microbenchmark summary
table. The unit for timing and the number of times to evaluate expressions
can be changed.

A nanosecond is one-billionth of a second, or 107 seconds (unit = "ns").
For other problems one may prefer to specify microseconds (unit = "us") or
milliseconds (unit = "ms"), which are millionth of seconds or thousandth of

seconds, respectively.

The summary shows that 1:n is the fastest way to generate this sequence,
while seq(1, n, 1) is the slowest. Note, however, that seq and seq. int may
have different types of return values. If the sequence is an integer sequence,
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clearly seq.int is much more efficient than seq (about 17 times faster in this
example). o

seq.int{1,n, 1)~ ‘C’\/%——

seq(1,n, 1)~

1e+03 1e+04 1e+05
Time [nanoseconds]

FIGURE 15.1: Violin plot of microbenchmark in Example 15.1 comparing
three methods to create a sequence of 1000 integers.

Example 15.2 (Benchmarking methods to initialize a vector). There are
several ways to initialize storage for a numeric vector size n to the value 1.
Occasionally, we need the equivalent of MATLAB’s ‘ones’ which is a one-
column matrix rather than a vector in R. Readers should verify that each of
the methods below produces the desired result, either as a numeric vector of
ones of length n, or as a n X 1 numeric matrix of ones.

Below, in the arguments to microbenchmark, some optional labels are
inserted to the left of each expression, to simplify the labeling on the result.

n <- 100

mb2 <- microbenchmark(
numeric = numeric(n) + 1,
rep = rep(1, n),
seq = seq(from=1, to=1, length=n),
ones = matrix(1, nrow=n, ncol=1),
as.ones = as.matrix(rep(l, n))

)
The summary table is below.

mb2

Unit: nanoseconds
expr min 1q mean median uq max neval

numeric 395 790 936.35 790 790 10667 100
rep 0 395 422.76 395 395 3160 100
seq 5926 6321 7443.04 6716 7111 37136 100
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ones 790 1185 1438.08 1185 1186 17383 100
as.ones 4740 5135 6052.37 5136 5531 64395 100

This benchmark result shows that if a numeric vector of ones is required,
rep is the fastest in this comparison. If a numeric matrix (like MATLAB’s
‘ones’) is required, directly initializing the matrix (labeled ‘ones’) is about
five times faster than converting the vector to a matrix (labeled ‘as.ones’).

An interesting observation is that apparently as.matrix is a somewhat
costly operation. The average time for evaluating the ‘as.ones’ expression,
which applies as.matrix after rep, is more than three times the sum of the
average times for ‘rep’ and ‘ones’.

o

R Note 15.1 The ‘ones’ column vector in R

The n x 1 matrix of ones is sometimes required in computing with
matrices. In R a numeric vector and a numeric matrix are different
types of objects. A vector of ones does not have a dimension attribute,
so it cannot be used in matrix multiplication or as an argument to a
function that requires it have a dimension. To create a ‘ones’ matrix
in R, use matrix to create the object. Notice that the structure (str)
of the vector and the matrix differ, and the vector does not have a
dimension attribute.

> onesVector <- rep(l, 5)

> onesMatrix <- matrix(1, nrow=5)
> str(onesVector)

num [1:5] 11111

> str(onesMatrix)

num [1:5, 1] 1 11 1 1

> dim(onesVector)

NULL

> dim(onesMatrix)

[11 51

15.2.2 Using the rbenchmark Package

The rbenchmark package [172] provides a function benchmark, which is
a convenient wrapper around the R system.time function. (Note that there
is also a package named benchmark available, but that is not the general
purpose utility that we want here; for this type of example, install the package
rbenchmark rather than benchmark).

The benchmark function performs a similar timing experiment as
microbenchmark. It replicates timing the list of expressions a default number
of times (100) and returns a table summarizing the average times and the
relative timings, depending on which columns were specified. The individual
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replicates of times are not returned, so it is not possible to display these results
in a boxplot or violin plot as with microbenchmark.

When timing a relatively simple expression with benchmark, the time may
be reported as zero. In that case, the relative time column will have NA. In
this case, it is probably better to use microbenchmark for its sub-millisecond
accuracy.

Example 15.3 (Timings of two multivariate normal generators). In Ex-
ample 3.19 we compared the timings of several different functions to gen-
erate multivariate normal random samples. In that example, we used the
system.time function directly. Here we revisit the example using the wrapper
for system.time provided by rbenchmark. In this example, we compare two
of the generators, MASS: :mvrnorm and mvtnorm: : rmvnorm.

library(rbenchmark)

library (MASS)

library(mvtnorm)

n <- 100 #sample size
d <- 30 #dimension
N <- 2000 #iterations

mu <- numeric(d)

benchmark (
columns = c("test", "replications", "elapsed", "relative"),
replications = 2000,
cov = {S <- cov(matrix(rnorm(n*d), n, d))},
mvrnorm = mvrnorm(n, mu, S),
rmvnorm = rmvnorm(n, mu, S)

)

test replications elapsed relative
1 cov 2000 0.76 1.000
2 mvrnorm 2000 1.09 1.434
3 rmvnorm 2000 1.50 1.974

This table includes the efficiency of the methods relative to the fastest one.
Here we included timing to generate the random covariance matrices, be-
cause that is not a negligible amount of time. The relative efficiencies are
1.09/0.76 = 1.434211 and 1.50/0.76 = 1.973684. If we were to take mvrnorm
as the baseline, the relative speed of rmvnorm is 1.50/1.09 = 1.377 or
equivalently, 1.974/1.434 = 1.377. In this benchmark, MASS: :mvrnorm (us-
ing spectral decomposition) is faster than rmvnorm by about 27%, because
(1.50 — 1.09)/1.50 &= 0.27.

Referring to Example 3.19, we have similar results for these two generators
in terms of relative performance. o
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15.3 Profiling

To gain some insight into what parts of some code are less efficient, the
basic idea is to perform many repeated micro-timings. Instead of timing an
entire function call or block of code, the code is stopped at regular, small
increments of time, and information about what is executing at that moment
is recorded. See “Tidying and Profiling Code” in the R help file “Writing R
Extensions” [230].

Example 15.4 (Profiling with Rprof). We apply Rprof here to the distance
correlation function dcor in the energy package, placing the function we want
to profile between the Rprof calls.

x <= rnorm(1000)
y <- rnorm(1000)

Rprof ("pr.out", line.profiling = TRUE)
energy: :dcor(x, y)
Rprof (NULL)

Now we can use summaryRprof to summarize the results.

> summaryRprof ("pr.out")

$‘by.self

self.time self.pct total.time total.pct
"as.matrix.dist" 0.08 50.0 0.12 75.0
".c" 0.02 12.5 0.02 12.5
"col" 0.02 12.5 0.02 12.5
"matrix" 0.02 12.5 0.02 12.5
"t.default" 0.02 12.5 0.02 12.5
$by.total

total.time total.pct self.time self.pct
".dcov" 0.16 100.0 0.00 0.0
"energy: :dcor" 0.16 100.0 0.00 0.0
"as.matrix.dist" 0.12 75.0 0.08 50.0
"as.matrix" 0.12 75.0 0.00 0.0
".c" 0.02 12.5 0.02 12.5
"col" 0.02 12.5 0.02 12.5
"matrix" 0.02 12.5 0.02 12.5
"t.default" 0.02 12.5 0.02 12.5
"t 0.02 12.5 0.00 0.0

$sample.interval
[1] 0.02

$sampling.time
[1] 0.16
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The part of the implementation of dcor written in C (indicated by the line
labeled “.C”) is not profiled by Rprof. For the R code, it appears that the
as.matrix calls account for a surprising amount of time. o

Example 15.5 (profvis interactive visualization). The profvis package [48]
offers an interactive visualization of the profile results, that can be rendered
in Shiny. For the profile data on energy: :dcor, comparable to Example 15.4:

library(profvis)
profvis(energy: :dcor(x, y))
A screen shot in Figure 15.2 displays some of these results. o
104 -deov -
105 functiom(x, y, index=1.0) |
l0& $ distance co iance statistic independence
1a7 # deov = rector)
L0E # this function I st method for computing
dCow
105 # it is called by r functions
1 if (!{elassix) == "dist" x <- distixn)
111 if (l{classiy) == "dist™)) ¥ <- distiy)
11z *x <- as.matrix(x) | 401 20
113 ¥ <= as.matrix(y] | 477 10 i
14 dst <- TRUE
n <- nrowix)
m <- nrowly!
117 if (n != m) stop("Sample sizes must agree™)
L1eg if (1 (allilis_finitelcix, vi)l]) -406 || [V |
115 stop("Data contains missing or infinite wvalues")
120 dims <- cin, NCOL(x), NCOL{y), dst)
121 idx <- l:dims[1]
122 DCOV <- numeric(4)
123 a =<- .Cc{"dcov", 15.3 30 -
124 x = as.doubleitix)),
125 ¥y = as.double(tiy)),
12e byrow = as.integer (TRUE),
127 dims = as.integeri(dims],
1 index = as.double (index),
idx = as.double (idx),
130 DCOV = as.double (DCOV) ,
131 PACERGE = "energy"™)
132 return{a$DCOV)
}
135 deov <-
126 functiom(x, y, index=1.0) |
137 # distance correlation statistic for independence
row
as.matrix.dist
las.matrix |as.matriz |is.finite |.C
Rprof .dcow
profvis ‘enargy: sdeor
0 10 20 a0 p =0 0 0

FIGURE 15.2: Visualization of profile data from the profvis function.
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15.4 Object Size, Attributes, and Equality
15.4.1 Object Size

Functions are available to find the size of an object stored in the R
workspace and to access any object attributes. Objects that store the same
data can have different sizes and attributes.

The size of an object can be returned by the R function object.size , or
by a similar function object_size available in the pryr package [315]. The
pryr package is a collection of useful utility functions for developers, but it
includes some simple functions (such as object_size or compare_size)) that
are easy to apply. From the package description, pryr “Tools for Computing
on the Language” contains “Useful tools to pry back the covers of R and
understand the language at a deeper level.”

Example 15.6 (Object size). Consider two versions of a large data set, stored
as a matrix and as a data frame. We compare the size of these objects, which
store the same data, but differ in object class and attributes. To run the code
for this example, first install the pryr package from CRAN.

x <- matrix(rnorm(5000), 1000, 5) #1000 obs in R"5
DF <- as.data.frame(x)

The object.size function in R wtils gives an estimate of the memory used
to store an object.

> object.size(x)
40200 bytes
> object.size(DF)
41104 bytes

According to the pryr::object_size help page, object_size “works simi-
larly to object.size, but counts more accurately and includes the size of envi-
ronments.”

> pryr::object_size(x)
40.2 kB
> pryr::object_size(DF)
41.1 kB

In both reports of size, the data frame DF requires only a small amount of
additional storage compared with the data matrix. Refer to the manual for
pryr::compare_size for examples where the two functions may differ.

There are some differences between object.size and object_size in the
method that size is measured. Another utility in pryr is compare_size which
compares the result of both functions.
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> pryr::compare_size(x)
base pryr
40200 40200

One reason to prefer the function pryr::object_size, or the related com-
parison utility pryr::compare_size, is that object_size is more accurate.
Notice the difference in the reported size of the list below.

> listTwo <- list(x, x)

> pryr::compare_size(listTwo)
base pryr

80456 40256

The function object.size counted the size of the matrix x twice, while
object_size returned what we probably wanted, which is roughly the size of
one copy of x. See the manual of compare_size for more details about the
differences in the way that object.size and object_size measure the size
of an object. o

15.4.2 Attributes of Objects

Example 15.7 (Comparing objects and attributes). Let us compare the ob-
jects from Example 15.6 for differences in attributes, names, etc. The structure
function str shows how the objects differ.

> str(x)

num [1:1000, 1:5] 1.132 0.634 -0.666 0.273 -2.381 ...
> str(DF)

’data.frame’: 1000 obs. of 5 variables:

$ Vi: num 1.132 0.634 -0.666 0.273 -2.381 ...

$ V2: num -0.0582 0.1719 -0.1587 -0.1852 -0.9036 ...
$ V3: num -0.352 -1.023 -0.59 0.207 0.913 ...

$ V4: num -0.618 -1.029 0.253 3.64 0.515 ...

$ V5: num 0.789 0.251 0.172 0.965 0.857 ...

Comparing these two objects for equality using all.equal reports the
differences in more detail.

> all.equal(x, DF)

[1] "Modes: numeric, list"

[2] "Lengths: 5000, 5"

[3] "names for current but not for target"

[4] "Attributes: < Names: 1 string mismatch >"

[6] "Attributes: < Length mismatch: comparison on first 1 components >"
[6] "Attributes: < Component 1: Modes: numeric, character >"

[7] "Attributes: < Component 1: Lengths: 2, 1 >"

[8] "Attributes: < Component 1: target is numeric, current is character >"
[9] "target is matrix, current is data.frame"

To see just the attributes, we can use attributes. The report is
long because it lists all row numbers, so we are just showing the names
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of the attributes. To ignore attributes in the result of all.equal, set
check.attributes = FALSE.

> names (attributes(x))

[1] lldimn
> names (attributes(DF))
[1] "names" "row.names" "class"

> all.equal(x, DF, check.attributes = FALSE)
[1] "target is matrix, current is data.frame"

15.4.3 Comparing Objects for Equality

Objects stored in memory can differ in several ways, including their struc-
ture, type, attributes, or values. For example, a data frame and a matrix may
contain the same values but are not identically equal. A numeric vector of
length n is not logically equal to an n x 1 matrix with the same values.

Example 15.8 (Comparing objects for equality). Recall that whenever a
strictly TRUE or FALSE value is required from all.equal in a logical ex-
pression such as if (condition) ..., the function isTRUE should be applied
to the result. For example, ifelse requires a logical value as its first argu-
ment. In the first line below, all.equal(x, DF) evaluates to NA, which causes
the error.

> try(ifelse(all.equal(x, DF), "T", "F")) # error
[1] NA NA NA NA NA NA NA NA NA

> ifelse(isTRUE(all.equal(x, DF)), "T", "F") # correct
[1] "F"

Always use the second version with isTRUE for any comparison that must
evaluate to TRUE or FALSE.

This point is especially critical when comparing two numeric type values
using all.equal. When numbers that are exactly equal mathematically are
stored as numeric (as floating point numbers), they are not necessarily exactly
equal in their internal representation. Comparing two numeric types for exact
equality using == can lead to the hidden programming errors that do not raise
any error message, but may be serious coding errors or bugs in the program.
This type of hidden error can be very difficult to track down and fix. The
example below shows why one should never use logical equality == to compare
two numeric values.

<=1 - 10e-4
<-x+ 2
= (y - 2) # equal mathematically but

vV V VvV
Mg M
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[1] FALSE # not exactly equal internally

> isTRUE(all.equal(x, y - 2)) #gives expected result
(1] TRUE

If isTRUE is not used, the comparison can fail to return a logical value:

> ## does not necessarily evaluate to TRUE or FALSE
> try(ifelse(all.equal(x, y), "T", "F"))
[1] NA

> ## returns TRUE or FALSE
> ifelse(isTRUE(all.equal(x, y)), "T", "F")
[1] IIFII

15.5 Finding Source Code

R is an open-source project, so all of its source code is available to inspect.
It is well-documented, so the best references are the online documentation, as
well as any available vignettes, examples, and demos. If none of these answers
our specific question, then we may want to read the source code.

Ultimately, the most authoritative documentation of software is its code
(although not the most convenient or transparent). Sometimes finding R code
is as easy as typing the function name. However, often what is revealed is
not the actual code, but information about it; in that case we need to know
where and how to find it. Some of the possibilities are shown in the following
examples.

15.5.1 Finding R Function Code

Example 15.9 (Display R function code). Typing the function name in the
console may reveal the R code. For example, to see nclass.scott (Scott’s
normal reference rule) discussed in density estimation, Chapter 12, type
“nclass.scott” (without arguments or parentheses).

> nclass.scott
function (x)

{
h <- 3.5 * sqrt(stats::var(x)) * length(x)~(-1/3)
if (h > 0)
max (1, ceiling(diff (range(x))/h))
else 1L



Programming Topics 431

Alternately, body(nclass.scott) displays the function body. o

Example 15.10 (RSiteSearch). A convenient way to search for help on func-
tions and keywords is provided by the function RSiteSearch, which searches
http://search.r-project.org for functions and keywords in documenta-
tion. For example, suppose we would like to learn about a function in a pack-
age before installing the package. A shortcut to find the documentation is
RSiteSearch. To find information about a function ggcorr, simply type:

RSiteSearch("ggcorr")

Results are displayed in a web browser, including a link to the help page for
ggcorr, which is part of the GGally package. o

15.5.2 Methods

Example 15.11 (UseMethod). R provides functions args and body that
return the function arguments and the body of the function. For example,

> body(density)
UseMethod ("density")

indicates that density is an S3 method. Use the specific method in the argu-
ment to args and body to view the details.

> args(density.default)

function (x, bw = "nrd0", adjust = 1, kernel = c("gaussian",
"epanechnikov", "rectangular", "triangular", "biweight",
"cosine", "optcosine"), weights = NULL, window = kermel,
width, give.Rkern = FALSE, n = 512, from, to, cut = 3,
na.rm = FALSE, ...)

> body(density.default)

{
chkDots(...)
if (!missing(window) && missing(kernel))
kernel <- window
kernel <- match.arg(kernel)
(many lines omitted)
}

<

Example 15.12 (Show methods). To see the available methods of a generic
function or class, use methods.

> methods(t.test)
[1] t.test.default* t.test.formulax
see ‘Tmethods’ for accessing help and source code
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Suppose that we are interested in t.test.formula. Then either one of the
following will display the code.

getAnywhere(t.test.formula)
body(stats:::t.test.formula)

15.5.3 Methods and Functions in Packages

Example 15.13 (Object not found or not an exported object). Typing the
name of the function may report that it is “not an exported object”. For
example, if we want to see the code that implements the percentile boot-
strap confidence interval in the boot package (see Chapter 8), we first look
at boot.ci, but discover that it calls the perc.ci function when the type of
interval includes "perc". However, perc.ci is not exported from boot.

> perc.ci
Error: object ‘perc.ci’ not found

> boot::perc.ci
Error: ‘perc.ci’ is not an exported object from ‘namespace:boot’

In this example, the code can be displayed by getAnywhere. Alternately, the
triple colon operator ::: can access a non-exported object; try getAnywhere
or one of the alternatives below.

getAnywhere (perc.ci)
args(boot:::perc.ci)

body (boot: : :perc.ci)

boot:::perc.ci

getFromNamespace ("perc.ci", "boot")

<

Example 15.14 (getS3method). Occasionally we may want to inspect code
for a method. For example, microbenchmark has an autoplot method that
displays violin plots for its return value. In this case, getAnywhere only reveals
that autoplot is a method that requires the ggplot2 package.

library(microbenchmark)
library(ggplot2)
getAnywhere (autoplot)

A single object matching ’autoplot’ was found
It was found in the following places
package:ggplot2
namespace:ggplot2
with value
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function (object, ...)
{
UseMethod ("autoplot")
}
<bytecode: 0x00000000175cc040>
<environment: namespace:ggplot2>

To see the code that implements the autoplot method for a microbenchmark
object, we can try getS3method:

> getS3method("autoplot", class = "microbenchmark")
or

> getAnywhere (autoplot.microbenchmark)

15.5.4 Compiled Code

Example 15.15 (.Primitive or .Internal). The R code may make a call
to .Primitive or .Internal, which are internal functions. For examples see
sum, cumsum, or date.

In this case, there is a convenient utility show_c_source in the pryr pack-
age [315] that looks up the C source code on GitHub. Often this leads us
directly to the C source file containing the function. In other examples, it
takes somewhat more effort.

> pryr::show_c_source(.Primitive (cumsum(x)))
cumsum is implemented by do_cum with op =1

This function opens a web browser to https://github.com/wch/r-source, a
repository on GitHub [281]. It is a read-only mirror of the R source code. The
message from show_c_source explains that we should search for “do_ cum”
in one of the files on the page of search results. Click on “cum.c” to view the
file, and find “do_cum” code for computing the cumulative sum, and other
related functions. o

Example 15.16 (.Call, .External, .Cor .Fortran). An R function may in-
clude a call to external compiled code in a linked library via .Call, .External,
.C or .Fortran. For example, the distance function dist returns the result
from a .Call to a C function.

> dist

function (x, method = "euclidean", diag = FALSE, upper = FALSE,
p=2)

{

if (!is.na(pmatch(method, "euclidean")))
method <- "euclidean"
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(several lines omitted)

.Call(C_Cdist, x, method, attrs, p)

}
<bytecode: 0x0000000017278aa8>
<environment: namespace:stats>

To view the C code for C_Cdist, we can access the R source code if we
know where to look. It is convenient to search using the interface on GitHub.
To find the file, open a web browser to the GitHub R source code repository
at https://github.com/wch/r-source. Enter “Cdist” in the search box at
the top labeled “This repository” to search the entire r-source repository.
The top two results give us the .Call in the R function dist, and Cdist in
“distance.c”.

Another way to find the file “distance.c” in the r-source repository is to
navigate to it through src/library/stats, although this assumes that the
location of the file is easily guessed. o

15.6 Linking C/C++ Code Using Repp

The Rcpp package provides an elegant interface to extend R code with
compiled C or C++ functions. In this section, a few simple examples will
be explored that give some idea of how easy it is to use, given some basic
knowledge of R and C++.

Why use C++ with R? We have several methods to improve the compu-
tational efficiency of R code. After benchmarks and profiling code, sometimes
slow chunks remain, and the best way to speed up is to write those parts
in compiled code. However small or complex the programming task, Rcpp
facilitates combining compiled C++ code with R.

Some of the options that Rcpp makes available are

e Use cppFunction to include a C++ function in an R script or R Mark-
down file.

e Use sourceCpp to compile and link a C++ file and use any of its ex-
ported functions.

Create a C++ file of functions, compile and test it within RStudio.

Build packages within RStudio that include C++ code.

Here we only provide a brief introduction to Rcpp, so interested read-
ers are referred to the references [82, 312], for a more thorough discus-
sion and many examples. See also Dirk Eddelbuettel’s Repp page at http:
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//dirk.eddelbuettel.com/code/rcpp.html for code examples, slides, and
other resources. The Repp Gallery at http://gallery.rcpp.org/ is another
good resource.

To get started, one should install the Rcpp package. Some additional tools
may need to be installed, depending on the operating system. Windows users
need to install Rtools, which can be installed from the same page as Windows
for R (go to cran.r-project.org). Mac users should install Xcode from the
app store.

Example 15.17 (A first Repp experiment). To check that Repp and tools are
installed and ready to use, open and execute the sample C++ file in RStudio.
Under the File menu, select “New File ...” and “C++ file”. A file appears with
many comments. The file is shown (with comments removed) in Listing 15.1.

Listing 15.1: New C++ file from RStudio File menu

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo (NumericVector x) {
return x * 2;

}

/*x%x R
timesTwo (42)
*/

Click “Source” and save the file if it is not already saved, say as ‘temp.cpp’
The C++ code is compiled and the optional chunk of R code at the bottom
executes. The following should appear in the Console:

> Rcpp: :sourceCpp(’temp.cpp’)

> timesTwo (42)
[1] 84

The first two lines in the file are required. The line
// [[Rcpp: :export]]

is included before each function that is exported; if it is not there, then the
function is compiled but not exported.

The argument type of the function ‘timesTwo’ and the return type are
both NumericVector. This makes it easy to work with arrays without using
pointers.

The special environment at the bottom makes it possible to insert a few
lines of R code to run.
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Now, look in the Environment tab. A new object ‘timesTwo’ has appeared,
which has type ‘function’ This is an R function. Rcpp has created an R
function matching the C++ function and we have called the R function in
the expression ‘timesTwo(42). This function is available to use as long as it
remains in the environment. Try it with other arguments.

> timesTwo(0:5)
[1] 0 2 4 6 810

Use cppFunction within an R script

Repp provides the function cppFunction which dynamically defines a
C++ function within an R script or a chunk of R code within R Markdown.

The function definition (the C++ function) is entered as quoted text in
the first argument. Other arguments are optional.

Example 15.18 (cppFunction). In this example, we write a C++ function

vecnorm to compute the Euclidean norm of a vector ||z| = \/Z?d 3. The

matching R function vecnorm will be added to the R environment and it can
then be used like any other R function.

library (Rcpp)

set.seed(1)
x <- matrix(rnorm(20), nrow = 5, ncol = 4)

cppFunction(’double vecnorm(NumericVector v) {
// compute the Euclidean norm of vector v
int 4 = v.size();
double s = 0.0;
for (int i = 0; i < d; i++)
s += v(i) * v(i);
return sqrt(s);

)

print(vecnorm(x[, 11))
print (apply(x, MARGIN = 2, FUN = "vecnorm"))

This is an R source file. After saving it and clicking on ‘Source’, the result in
the console is

[1] 1.943693
[1] 1.943693 1.371373 2.998961 1.385724
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Source C++4 functions with sourceCpp

Many functions that one would develop with Rcpp would be used by more
than one application. It is a good practice to place these functions in a separate
C++ source file, so that there is exactly one version of the code to maintain.
We have already seen in Example 15.17 that a file of C++ functions that
includes the first lines

#include <Rcpp.h>
using namespace Rcpp;

can be compiled in RStudio by clicking on ‘Source’. It is also possible to source
one or more C++ files of this type within R code using the Repp function
sourceCpp.

Example 15.19 (sourceCpp). To illustrate the Repp sourceCpp function,
let us create a small demo function for printing. Although there is only one
function in the source file below, several functions can be defined in the same
source file.

Listing 15.2: printme.cpp

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
void print_me(IntegerVector x) {
// several ways to print in Rcpp
Rprintf ("my vector is (%d, %4, %d)\n",
x[0], x[1], x[21);
Rcpp::Rcout << "my vector is " << x << std::endl;
Rf _PrintValue (x);

Save this file as “printme.cpp”. Then load Rcpp and use the sourceCpp func-
tion within R code to compile and link this function. The result is that a new
R function called print_me is created and available to call from R.

library(Rcpp)
sourceCpp ("printme.cpp")

x <- sample(1:5)
print_me(x)

Running the lines above produced

> x <- sample(1:5)

> print_me(x)

my vector is (4, 5, 3)
my vector is 4 5 3 1 2
[1] 45312



438 Statistical Computing with R

To print a warning message, use Rf _warning. o

Readers who would like to use Repp in their work are strongly encouraged
to read one or more references such as [82] or [312], and explore the many
online examples and tutorials available.

15.7 Application: Baseball Data

The tidyverse (https://www.tidyverse.org/) is a collection of R pack-
ages for data science. For example, tidyverse includes ggplot2 for graphics and
dplyr for data manipulation. The packages in the tidyverse can be installed in a
bundle with install.packages("tidyverse") or through the RStudio pack-
age Install dialog. For the examples in this section, we need the dplyr, knitr,
and ggplot2 packages, as well as the Lahman package (for the baseball data)
[106, 313, 317, 324]. The following examples were inspired while covering Jim
Albert’s data science class. For a great collection of baseball applications, see
Jim’s blog at https://baseballwithr.wordpress.com/author/bayesball/
or his latest book “Visualizing Baseball” [6].

Example 15.20 (Lahman baseball data). The Lahman package [106] pro-
vides the tables from the “Sean Lahman Baseball Database” with data on
pitching, hitting, and other statistics from 1871 through 2015. In the follow-
ing, we want to select some statistics from the data table “Baseball” for the
year 1999. As a first step, we load the package and use the structure function
str to see the names and types of the variables.

library(Lahman)
str(Batting)

Part of the result of str is

’data.frame’: 102816 obs. of 22 variables:
$ playerID: chr ‘"abercdaOl" "addyboO1" "allisarO1" "allisdoO1" ...
$ yearID : int 1871 1871 1871 1871 1871 1871 1871 1871 1871 1871 ...

B : int 4 118 137 133 120 49 4 157 5 86 ...

$ A
$ R :int 0 30 28 2829 9 066 1 13 ...
$ H :int 0 32 40 44 39 11 1 63 1 13 ...

To extract the 1999 data, we can use the subset function or
dplyr::filter. In this example, we need the playerID, AB (number of times
at bat) and H (number of hits) variables.

# method 1
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S <- subset(Batting, Batting$yearID == 1999,
select = c("playerID", "AB", "H"))

Alternately, using the dplyr package and the pipe operator %>% we can
subset the data as follows.

# method 2 (dplyr)
library(dplyr)
Batting %>} filter(yearID == 1999) -> b

Note that with the pipe operators and the right assignment operator, oper-
ations flow from left to right. Next, we compute batting averages for players
in 1999 and further subset the data by selecting the players with at least 400
times at bat.

# method 1

AB <- as.vector(by(S$AB, S$playerID, FUN = sum))

H <- as.vector(by(S$H, S$playerID, FUN = sum))

S <- data.frame(playerID = unique(S$playerID),
AB = AB, H = H, AVG = round(H / AB, 3),
stringsAsFactors = FALSE)

5400 <- S[S$AB >= 400, ]

Alternately, with dplyr we apply mutate and filter.

# method 2 (dplyr)
b %>% group_by(playerID) %>

summarize (AB = sum(AB), H = sum(H)) -> S
S %>% mutate(AVG = round(H / AB, 3)) -> S
S %>% filter (AB >= 400) -> S400

Now sort the data in order of highest batting average to lowest, and extract
the observations with the top ten batting averages in 1999.

# method 1

o <- order(S400$AVG, decreasing = TRUE)
$400 <- 8400[o, ]

top <- S400[1:10, ]

With dplyr we use arrange and slice

# method 2 (dplyr)

S400 %>% arrange(desc(AVG)) -> S400
slice(S400, 1:10) -> top

top

which gives the top ten:

# A tibble: 10 x 4
playerID AB H AVG
<chr> <int> <int> <dbl>
1 walkelaO1 438 166 0.379
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2 garcinoO1 532 190 0.357
3 jeterdeO1 627 219 0.349
4 willibeO2 591 202 0.342
5 gwynntoO1 411 139 0.338
6 martiedO1l 502 169 0.337
7 gonzaluO1 614 206 0.336
8 abreuboO1 546 183 0.335
9 ramirma02 522 174 0.333
10 vizquomO1 574 191 0.333

To display player names, merge the top ten with the Master data table in
Lahman:

Master >/, select(playerID, nameFirst, namelast) -> m
top %>% inner_join(m) %>%
select (nameFirst, namelLast, AVG)

<

Example 15.21 (Comparison with microbenchmark). Here, we wrap the
code to implement the complete analysis for our two methods into two func-
tions, use_dplyr and no_dplyr. Then we can apply microbenchmark to com-
pare their execution times.

This example also serves to illustrate using R Markdown to generate re-
ports with the knitr package. The source code of the R Markdown file is shown
in Listing 15.3. Begin by opening a new R Markdown file from the File menu
in RStudio.

The Markdown file compiles to an HTML report by default, and the results
of this timing experiment should appear in a browser. The microbenchmark
summary below from that report reveals that the dplyr method is faster than
the base R approach. More timing experiments reveal that the difference in
execution time in this example is mainly due to the efficiency of the dplyr
group_by function.

## Unit: milliseconds

##  expr min 1q mean median uq max neval
## dplyr 10.60345 11.28533 13.46925 12.13787 13.98735 27.06962 100
##  Dbase 48.26349 53.13183 60.99135 55.45282 62.00017 128.05961 100

Timings will vary from one user to another, of course, because running times
depend on many things including hardware, software, and other processes that
may be running in the background. See the generated report for the violin plot
summary of the timings.

The R Markdown file in Listing 15.3 will be provided online. If entering
the code manually, note that the three back ticks ¢ ¢ ¢ that open and close the
chunks of R code may or may not be formatted properly when typeset. The
correct symbol is the left apostrophe, usually at the upper left corner left of
number 1 on the keyboard. o
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title: "Benchmarks on Lahman Batting data"
author: "Maria Rizzo"

date: "September 1, 2018"

output: html_document

((l{r}
library(Lahman)
library (dplyr)
library (ggplot2)

library(microbenchmark)
¢

## Define two functions to compare the two methods

ce{r}
use_dplyr <- function(yr) {
Batting %>% filter(yearID == yr) -> b
b %>% group_by(playerID) %>%
summarize (AB = sum(AB), H = sum(H)) -> S
S %>% mutate (AVG = round(H / AB, 3)) -> S
S %>% filter (AB >= 400) -> S400
S400 %>% arrange(desc(AVG)) -> S400
slice(S400, 1:10) -> top
top
}

no_dplyr <- function(yr) {
S <- subset(Batting, Batting$yearID == yr,
select = c("playerID", "AB", "H"))

AB <- as.vector(by(S$AB, S$playerID, FUN = sum))

H <- as.vector(by(S$H, S$playerID, FUN = sum))

S <- data.frame(playerID = unique(S$playerID),
AB = AB, H = H, AVG = round(H/AB,
stringsAsFactors = FALSE)

S400 <- S[S$AB >= 400, ]

o <- order (S400$AVG, decreasing = TRUE)

S400 <- 8400[o, 1]

top <- S400[1:10, ]

top

¢«
Check that these functions obtain the same results.

((({r}
all.equal(use_dplyr (1999), no_dplyr (1999))

3)7
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## Benchmark comparison of dplyr method vs basic method

(N4 ({r}

mb <- microbenchmark (
dplyr = use_dplyr (1999),
base = no_dplyr (1999)

)

mb
autoplot (mb)

¢«

Another version of the summary table:

(N4 ({r}
knitr::kable (summary (mb))

€«

Exercises

15.1 Suppose that we need to generate a sequence of odd integers from 1 to
n.

a. Show how to do this for n = 15 using seq, seq. int and the sequence
operator :. What is the type of object returned in each case?

b. Use microbenchmark in the microbenchmark package to compare
the computing time of these three methods for a sequence of 1000
odd integers (length should be 1000). Display a violin plot of the
benchmark results using autoplot.

c. Which of these methods is fastest? Discuss why one method may
be slower than the others.

15.2 Refer to Example 15.3. Repeat these comparisons using microbenchmark
and display a violin plot of the results. Based on these timings, order
these operations from fastest to slowest.

15.3 Refer to the following summary table from the microbenchmark timing
experiment in Example 15.2.

Unit: nanoseconds
expr min 1q mean median ug max neval
numeric 395 790 936.35 790 790 10667 100
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rep 0 395 422.76 395 395 3160 100
seq 5926 6321 7443.04 6716 7111 37136 100
ones 790 1185 1438.08 1185 1186 17383 100
as.ones 4740 5135 6052.37 5136 5531 64395 100

a. Compute the “relative” running times (relative to the fastest mean
time) for each of the mean times.

b. What is the percent improvement in computing time for initializing
the ‘ones’ n x 1 matrix if we initialize the matrix (labeled ‘ones’)
rather than use the function as.matrix (labeled ‘as.ones’)?

Refer to Example 3.19. Compare all of the methods of generating mul-
tivariate normal samples from Example 3.19 using the benchmark func-
tion in the rbenchmark package. See Example 15.3 to get started. Order
the methods from fastest to slowest and compare the relative timings
to those from Example 3.19.

Refer to Example 1.6 on run length encoding. Using rle to encode a
sequence of integers could result in a different object size. The original
sequence can be recovered using inverse.rle. Generate a random sam-
ple of size 10000 of a Poisson(A = 2) random variable, and use rle to
encode the sample. Show that inverse.rle recovers the original sample
using all.equal. Compare the object size of the original sample and
the RLE object. Now change the Poisson parameter varying A along
{0.1,0.5,1,2,4,8} and repeat the comparison of object sizes for each
A with n = 10000. Does the object size of the original Poisson sam-
ple change? Does the size of the RLE object change? Summarize any
pattern that you observe.

This exercise continues an analysis of baseball data from the application,
Example 15.20, which was inspired by one of Jim Albert’s data science
class exercises, “Top 10 WHIP Values”. WHIP stands for the mean num-
ber of walks and hits allowed per inning for a pitcher. In the Pitching
data frame (Lahman package), BB is the number of walks, H is the num-
ber of hits, and IPouts is the number of outs. Use str(Pitching) to
see more details. The WHIP statistic is defined by

BB+ H

HIP = ———.
W IPouts/3

For example, in 2016, Clayton Kershaw allowed 97 Hits and
11 Walks, generated 447 outs, and his WHIP statistic was
WHIP = (11 4+ 97)/(447/3) = 0.725. Pitchers with the low-
est WHIP statistics have the best performance according to this
measure. See Wikipedia’s List of Major League Baseball Career
WHIP Leaders at https://en.wikipedia.org/wiki/List_of_Major_
League_Baseball_career_WHIP_leaders for a list of the current top
WHIP pitchers.
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Find and display the best 10 WHIP pitchers for 2015. Qualifying pitch-
ers for this analysis are the ones where I Pouts >= 486.



Notation

Selected notation and abbreviations used throughout the text are summarized
here. Notation that is specific to a particular chapter is not included.

Symbol Description

Expected value of the ran-
dom variable X

Indicator function on the
set A: I(z) = 1ifxz € A
and I(z) =0ifzx ¢ A

The d x d identity matrix
Natural logarithm of x
Transition matrix of a
Markov chain

The one dimensional field
of real numbers

The d-dimensional real co-
ordinate space

Complete gamma function
cdf of the standard normal
distribution

Inverse cdf of the stan-
dard normal distribution:
O Ha)=2=0(2)=a
equal in distribution

is approximately equal to
X has the distribution
named on right of ~.
Variables on the left are iid
from distribution named on
the right.

Euclidean norm of z
Determinant of matrix A
Transpose of A

Sample mean or vector of
sample means
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Abbreviations

ASL achieved significance level

ASH average shifted histogram (density estimate)

BVN bivariate normal

cdf cumulative distribution function

dCor distance correlation

dCov distance covariance

ecdf, edf empirical cumulative distribution function

GUI graphical user interface

HPDI highest posterior density interval

IDE integrated development environment

iid independent and identically distributed

IMSE integrated mean squared error

LRT likelihood ratio test

M-H Metropolis-Hastings

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MISE mean integrated squared error

MLE maximum likelihood estimator or estimate

MSE mean squared error

MVN multivariate normal

N(u,0?) Normal distribution with mean p and variance o2

Ng4(p, %) d-dimensional multivariate normal distribution with mean vector u
and variance-covariance matrix %

NN nearest neighbor

PC principal component

PCA principal component analysis

2(v) Chi-squared distribution with v degrees of freedom

W4(2,n) Wishart distribution with parameters (X, n, d)

se standard error

svd singular value decomposition
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bivariate frequency table, 361
bivariate normal distribution, 49
bootstrap, 214
BCa interval, 234
bias, 217, 218
confidence interval, 226, 229
standard error, 215-217
bootstrap confidence interval, 224,
226-228, 232
basic bootstrap, 225
BCa, 231, 232, 234
percentile, 226
standard normal, 224
t-interval, 228-230
bootstrap t-interval, 228, 229
boundary kernels, 359
Brent’s method, 385
broom package, 253

C++, 434

canonical bandwidth, 355

Cauchy distribution, 46

cdf, 37

Central Limit Theorem, 51

chisquare distribution, 46, 76

Choleski factorization, 84, 87

color palettes, 22

colors, 22

column sums, 76

confidence interval, 190
Monte Carlo, 189

confidence level, 190

contaminated normal, 187, 198
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contour plot, 126
contour plot, filled, 128
control variates, 159-164
control variates and regression, 165
convergence monitoring, 322
convolutions, 75, 77
correlation, 39, 86, 215, 386
dCor, 287, 288, 290
density, 388, 390
correlation plot, 120
Count Five test, 204, 207
counting process, 99
covariance, 39, 50
dCov, 288, 289
Cramér—von Mises statistic, 295
Cramér-von Mises statistic, 272
cross validation, 235
leave-one-out, 235, 238
csv files, 31
cumulative distribution function, 37

data frames, 13

data sets, 11

dCov, 292

density, 37

distance correlation, 287, 290
distance covariance, 289, 292, 293
dplyr, 438

ecdf, 52
eigenvector decomposition, 84, 85
eigenvectors, 136
EM algorithm, 409, 410
empirical confidence level, 190, 191
empirical distribution function, 52,
214
empirical power, 197
energy distance, 281
energy statistics, 281
energy test
independence, 292, 293
normality, 201-203
two sample, 281-286
Epanechnikov kernel, 353
equivalent kernels, 355
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expected value, 38
exponential distribution, 46, 64

factorial, 10

flat histogram, 128

formula specification, 20
Freedman-Diaconis Rule, 344
frequency polygon, 345, 346
function, 12

game theory, 413415
gamma distribution, 46, 77, 79, 403
gamma function, 378
Gaussian kernel, 352, 353, 356, 367
Gelman-Rubin method, 323-325, 327
geometric distribution, 42, 66
ggplot

bar plot, 24

curve or function, 198

error bars, 198

facet_ wrap, 26

fitted line plot, 247

geom__smooth, 249

scatter plot, 24

violin plot, 26, 422
ggplot2 package, 21
Gibbs sampler, 318, 320-322,

328-331

GitHub r-source, 433
goodness-of-fit, 194, 196, 211
graphical parameters, 78
graphics functions, 115

hat values, 255

histogram, 339

histogram density estimate, 338, 339,
341-344

hit-or-miss, 153

HPDI, 308

importance sampling, 168-170, 172
stratified, 176, 178
independence, 40
test, 291
independence sampler, 316, 317
influence values, 234, 260
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initialize, 422
inverse transform method, 63—66

inverse transform method, discrete,
65

jackknife, 220

bias, 220, 221

standard error, 222, 223
jackknife-after-bootstrap, 243, 260
joint density, 38

kernel density estimation, 351, 352,
356
kernels, 353-355
Kolmogorov-Smirnov
randomization test, 271
statistic, 271
test, 270

Lahman baseball data, 438
Laplace distribution, 96

law of large numbers, 50

law of total probability, 55
legend, 22, 130, 390
likelihood function, 54

line types, 22

linear interpolation, 347
linear model, 237

linear programming, 411-415
list, 13, 17

loadings, 136

logarithmic distribution, 67, 73, 74
logical operators, 75
lognormal distribution, 47

machine constants, 377

marginal density, 38

Markov chain, 57, 58

Markov Chain Monte Carlo, 297

mathematical annotation, 64, 388

matrices, 15

maximum likelihood, 391, 403, 405,
408, 409

maximum likelihood estimation, 54

MCMC, 297

mean squared error, 53, 185, 186
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method of moments, 53
Metropolis independence sampler,
316
Metropolis sampler, 309, 310
Metropolis, random walk, 310
Metropolis-Hastings Algorithm, 299
microbenchmark package, 420
mixture, 75, 77, 79, 80, 82, 90
model-based resampling, 258
modified residuals, 255
moments, 38, 39
Monte Carlo integration, 147-165,
168-170, 172-178
Morra game, 413-415
MSE, 185, 186
multinomial distribution, 42
multivariate kurtosis, 211
multivariate normal
distribution, 49, 50, 83
generator, 84, 85, 87, 89
goodness-of-fit, 201, 211
mixture, 90, 91, 211, 367
multivariate skewness, 211

nearest neighbors

finding, 275

statistic, 277

test, 273, 274, 278, 286
negative binomial distribution, 43
non-central ¢, 198
normal

distribution, 45

mixture, 90, 198
normal reference rule, 342, 343, 367
normality, 196
numerical integration, 386

O “big Oh” relation, 379

o “little oh” relation, 379

ones, 422, 423

optimization, 402, 403, 405, 408, 409
ordinary bootstrap, 192

p-value, 192, 266, 267, 270, 284, 291
panel, 115
parallel coordinate plot, 132
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parallel coordinate plots, 132

parametric bootstrap, 192

Pareto distribution, 96

pdf, 37

permutation, 10

permutation test, 265, 266, 273, 274,

278, 281, 283-286

independence, 291, 292

perspective plot, 121

plot type, 95

plots, 20
average shifted histogram, 347
biplot, 140, 141
density estimate, 356
fitted line plot, 247, 249
frequency polygon, 345
ggplot, 247
ggplot curve, 198
histogram, 339, 343
parallel coordinates, 132
screeplot, 137
segment, star, 133
violin plot, 420

plotting symbols, 22

Poisson distribution, 44, 67

Poisson process, 99-103
homogeneous, 99-101
nonhomogeneous, 102, 103

Poisson-Gamma mixture, 82

posterior, 57, 298

power, 197, 198

power curve, 198

precision, 39

principal components, 135, 138

prior, 57

probability density function, 37

product kernel, 367

proposal distribution, 299

pryr package, 427, 433

quadratic form, 408
quantile, 52

R source code, 433
random number generator, 61
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random walk, 59, 105
random walk Metropolis, 310, 311
randomization test, 278
raw residuals, 254
Rayleigh distribution, 96, 179, 301
rbenchmark package, 420
Repp package, 434
rectangular kernel, 352
reflection boundary technique, 359
regression, 163, 164, 238, 249
remove objects, 27
renewal process, 104
resampling cases, 250
resampling errors, 256, 258
residuals, 255

modified, 255

raw, 254

standardized, 255
row sums, 76

Scott’s Rule, 342, 343, 367
screeplot, 137
segment plot, 133
sequence, 420, 422
Silverman’s rule, 354
simplex method, 411-415
singular value decomposition, 84, 86
skewness, 194, 195
adjustment, 231, 342, 346, 370,
371
statistic, 194
test of normality, 194-196, 198,
200, 202
smoothing parameter, 353, 366
spectral decomposition, 84, 85, 135
standard deviation, 39
standard error, 53, 151, 185
bootstrap, 215, 216
jackknife, 222
Monte Carlo estimate, 184
standardize, 88
standardized residuals, 255
star plot, 133
stationary distribution, 58
Stieltjes constants, 381
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stratified importance sampling, 176,
177

stratified sampling, 173-175

strong law of large numbers, 51

Student’s t distribution, 46

Sturges’ Rule, 339

support set, 38

surface plot, 120

t distribution, 46

Taylor expansion, 379, 380
textttboot(boot), 252
texttteigen, 137

tibble, 253

timer, 89

transition matrix, 58
triangular kernel, 352
trimmed mean, 187
two-sample problem, 269
Type I error, 192-194
Type II error, 192, 197

unbiased, 52

uniform distribution, 47

unit sphere, 93

univariate probability functions, 63

variance, 39

variance reduction, 154-165,
168-170, 172-178

viewing transformation, 121, 122

violin plot, 420, 422

warnings, 271

Wilcoxon rank sum test, 18
window width, 353
Wishart distribution, 92
workspace, 26

yalmpute, 275

zeta function, 381
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